Question #132201
Show that (p∧q=⇒ r and (p=⇒r)∧(q=⇒ r) are not logically equivalent.
1
Expert's answer
2020-09-10T19:03:32-0400

pqrpqprqr(pq)r(pr)(qr)TTTTTTTTTTFTFFFFTFTFTTTTTFFFFTTFFTTFTTTTFTFFTFTFFFTFTTTTFFFFTTTT\begin{matrix}p & q & r & p\land q & p \to r & q \to r & (p\land q ) \to r& (p \to r)\land (q \to r)\\ T & T & T & T & T & T & T & T\\ T & T & F & T & F & F & F & F\\ T & F &T &F & T & T & T & T\\ T & F & F &F &F &T & T & F\\ F&T&T& F&T&T&T&T\\ F&T&F&F&T&F&T&F\\ F&F&T&F&T&T&T&T\\ F&F&F&F&T&T&T&T \end{matrix}

(pq)r  and (pr)(qr)(p∧q)⇒ r \; \textrm{and }(p⇒r)∧(q⇒ r) are not logically equivalent, because the last two columns of the truth table do not contain the same truth value in each raw.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS