(a)"\\forall z\\exists y\\exists x\\neg T(x,y,z)"
(b)Obtain the negation by steps:
1)"\\neg(\\exists x\\exists y P(x,y))\\vee\\neg(\\forall x\\forall y Q(x,y))"
2)"\\forall x\\forall y \\neg P(x,y)\\vee\\exists x\\exists y \\neg Q(x,y)"
(c)By steps:
1)"\\forall x\\forall y\\neg(Q(x,y)\\leftrightarrow Q(y,x))"
2)"\\forall x\\forall y(Q(x,y) \\oplus Q(y,x))", where "\\oplus" is exclusive or
(d)By steps:
1)"\\exists y\\forall x\\forall z\\neg(T(x,y,z)\\vee Q(x,y))"
2)"\\exists y\\forall x\\forall z(\\neg T(x,y,z)\\wedge \\neg Q(x,y))"
Answer:
(a)"\\forall z\\exists y\\exists x\\neg T(x,y,z)"
(b)"\\forall x\\forall y \\neg P(x,y)\\vee\\exists x\\exists y \\neg Q(x,y)"
(c)"\\forall x\\forall y(Q(x,y) \\oplus Q(y,x))"
(d)"\\exists y\\forall x\\forall z(\\neg T(x,y,z)\\wedge \\neg Q(x,y))"
Comments
Leave a comment