Let X = 13, Y = 10, Z = 10, T = 3, W = 3.
(a) C(13,10)=10!3!13!=1⋅2⋅313⋅12⋅11=13⋅2⋅11=286.
(b) P(13,10)=(13−10)!13!=3!13!=13×12×11×10×9×8×7×6×5×4.
(c) If there is exactly one woman chosen, this is possible in C(10,9)C(3,1)=9!1!10!1!2!3!=10×3=30 ways;
two women chosen in C(10,8)C(3,2)=8!2!10!2!1!3!=45×3=135 ways;
three women chosen in C(10,7)C(3,3)=7!3!10!3!0!3!=120 ways.
Altogether there are 30+135+120 = 285 possible choices.
Comments