Let X = 13, Y = 10, Z = 10, T = 3, W = 3.
(a) "C(13, 10) = \\frac{13!}{10!3!} = \\frac{13\u00b712\u00b711}{1\u00b72\u00b73} = 13 \u00b7 2 \u00b7 11 = 286."
(b) "P(13, 10) = \\frac{13!}{(13\u221210)!} = \\frac{13!}{3!} = 13 \\times 12 \\times 11 \\times 10 \\times 9 \\times 8 \\times 7 \\times 6 \\times 5 \\times 4."
(c) If there is exactly one woman chosen, this is possible in "C(10, 9)C(3, 1) = \\frac{10!}{9!1!}\\frac{3!}{1!2!} = 10 \\times 3 = 30" ways;
two women chosen in "C(10, 8)C(3, 2) =\\frac{10!}{8!2!}\\frac{3!}{2!1!} = 45 \\times3 = 135" ways;
three women chosen in "C(10, 7)C(3, 3) =\\frac{10!}{7!3!}\\frac{3!}{3!0!} = 120" ways.
Altogether there are 30+135+120 = 285 possible choices.
Comments
Leave a comment