Question #120552
Find the simplest form for the following boolean expressions using algebraic methods.
1. (A+B̄)(B+C)+(A+B)(C+Å̄)
2. (A+B)(AC+AC̄)+AB+B
1
Expert's answer
2020-06-09T18:36:39-0400

1 )


AB+AC+B.B~+B~.C+AC+A.A~+BC+B.A~AB+AC+B.\tilde{B}+\tilde{B}.C+AC+A.\tilde{A}+BC+B.\tilde{A}

AB+AC+B~.C+AC+BC+B.A~AB+AC+\tilde{B}.C+AC+BC+B.\tilde{A}

AB+AC+B~.C+BC+B.A~AB+AC+\tilde{B}.C+BC+B.\tilde{A}

AB+AC+C(B~+B)+B.A~AB+AC+C(\tilde{B}+B)+B.\tilde{A}

B(A+A~)+AC+CB(A+\tilde{A})+AC+C

B+AC+CB+AC+C

B+C(A+1)B+C(A+1)

B+CB+C







2 )

(A+B)(A.C+A.C~)+A.B+B(A+B)(A.C+A.\tilde{C})+A.B+B

SOLUTION:-

=A.C+A.C~+A.B.C+A.B.C~+A.B+BA.C+A.\tilde{C}+A.B.C+A.B.\tilde{C}+A.B+B

=A.C+A.C~+A.B.C+A.B.C~+A.(B+1)A.C+A.\tilde{C}+A.B.C+A.B.\tilde{C}+A.(B+1)

=A.C+A.C~+A.B.C+A.B.C~+AA.C+A.\tilde{C}+A.B.C+A.B.\tilde{C}+A

=A.C+A.C~+A.B.(C+C~)+AA.C+A.\tilde{C}+A.B.(C+\tilde{C})+A

=A.C+A.C~+A.B+AA.C+A.\tilde{C}+A.B+A

=A.C+A.C~+A.(B+1)A.C+A.\tilde{C}+A.(B+1)

=A.C+A.C~+AA.C+A.\tilde{C} +A

=A.(C+C~)+AA.(C+\tilde{C})+A

=A+A

=A


LAWS:-

1 ) x.X~=0x.\tilde{X}=0

2 ) x.x=x

3 ) x+x=x

4 ) x+1=1

5 ) x+x~=1x+\tilde{x}=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS