Question #117936
Find out if the following functions are invertible or not, If it is invertible, then find the rule of the inverse (f^(-1) (x))

1.
f:k → k^+
f(x)=x^2

2.
k^+ → k^+
f(x)=1/x

3.
f:k^+ → k^+
f(x)=x^2
1
Expert's answer
2020-05-25T21:01:54-0400

A function is invertible if the function is surjective and injective.

(More infomartion: https://en.wikipedia.org/wiki/Inverse_function)


Definition. Let ff  be a function whose domain is a set XX . The function ff  is said to be injective provided that for all aa  and bb  in XX , whenever f(a)=f(b)f(a)=f(b) , then a=ba=b ; that is, f(a)=f(b)f(a)=f(b)  implies a=ba=b . Equivalently, if aba\neq b , then f(a)f(b)f(a)\neq f(b) .

Symbolically,



a,bX,    f(a)=f(b)a=b\displaystyle \forall a,b\in X,\;\;f(a)=f(b)\Rightarrow a=b

which is logically equivalent to the contrapositive,



a,bX,    f(a)f(b)ab\displaystyle \forall a,b\in X,\;\;f(a)\neq f(b)\Rightarrow a\neq b

(More infomation: https://en.wikipedia.org/wiki/Injective_function)


Definition.surjective function is a function whose image is equal to its codomain. Equivalently, a function ff  with domain XX  and codomain YY  is surjective, if for every yy  in YY , there exists at least one xx  in XX  with f(x)=y\displaystyle f(x)=y .

Symbolically,

If f ⁣:XY\displaystyle f\colon X\rightarrow Y , then f\displaystyle f  is said to be surjective if



yY,xX,    f(x)=y\displaystyle \forall y\in Y,\,\exists x\in X,\;\;f(x)=y

(More information: https://en.wikipedia.org/wiki/Surjective_function)


Hint: For all these questions, I will consider that kRk\equiv\reals .

In our case,

(1) f:RR+;f(x)=x2f : \reals\rightarrow\reals^+;\quad f(x)=x^2

The function f(x)=x2f(x)=x^2 is not injective in the domain D(f)=RD(f)=\reals , since



(3)2=9=32,but33(-3)^2=9=3^2,\quad\text{but}\quad -3\neq3

Conclusion.



f:RR+;f(x)=x2no inverse function\boxed{f : \reals\rightarrow\reals^+;\quad f(x)=x^2-\text{no inverse function}}

(2) f:R+R+;f(x)=1/xf : \reals^+\rightarrow\reals^+;\quad f(x)=1/x

This function is surjective and injective, therefore the function has an inverse function.



y=1xx=1yf(x)=1xf1(x)=1xy=\frac{1}{x}\longrightarrow x=\frac{1}{y}\longrightarrow\\[0.3cm] \boxed{f(x)=\frac{1}{x}\longrightarrow f^{-1}(x)=\frac{1}{x}}

Verification,



f(f1(x))=11x=xf\left(f^{-1}(x)\right)=\frac{1}{\displaystyle\frac{1}{x}}=x

(3) f:R+R+;f(x)=x2f : \reals^+\rightarrow\reals^+;\quad f(x)=x^2

This function is surjective and injective, therefore the function has an inverse function.



y=x2x=yf(x)=x2f1(x)=xy=x^2\longrightarrow x=\sqrt{y}\longrightarrow\\[0.3cm] \boxed{f(x)=x^2\longrightarrow f^{-1}(x)=\sqrt{x}}

Verification,



f(f1(x))=(x)2=xf\left(f^{-1}(x)\right)=\left(\sqrt{x}\right)^2=x

ANSWER


(1) f:RR+;f(x)=x2f : \reals\rightarrow\reals^+;\quad f(x)=x^2



f:RR+;f(x)=x2no inverse functionf : \reals\rightarrow\reals^+;\quad f(x)=x^2-\text{no inverse function}

(2) f:R+R+;f(x)=1/xf : \reals^+\rightarrow\reals^+;\quad f(x)=1/x



f(x)=1xf1(x)=1xf(x)=\frac{1}{x}\longrightarrow f^{-1}(x)=\frac{1}{x}

(3) f:R+R+;f(x)=x2f : \reals^+\rightarrow\reals^+;\quad f(x)=x^2



f(x)=x2f1(x)=xf(x)=x^2\longrightarrow f^{-1}(x)=\sqrt{x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS