Answer to Question #117936 in Discrete Mathematics for inv

Question #117936
Find out if the following functions are invertible or not, If it is invertible, then find the rule of the inverse (f^(-1) (x))

1.
f:k → k^+
f(x)=x^2

2.
k^+ → k^+
f(x)=1/x

3.
f:k^+ → k^+
f(x)=x^2
1
Expert's answer
2020-05-25T21:01:54-0400

A function is invertible if the function is surjective and injective.

(More infomartion: https://en.wikipedia.org/wiki/Inverse_function)


Definition. Let "f"  be a function whose domain is a set "X" . The function "f"  is said to be injective provided that for all "a"  and "b"  in "X" , whenever "f(a)=f(b)" , then "a=b" ; that is, "f(a)=f(b)"  implies "a=b" . Equivalently, if "a\\neq b" , then "f(a)\\neq f(b)" .

Symbolically,



"\\displaystyle \\forall a,b\\in X,\\;\\;f(a)=f(b)\\Rightarrow a=b"

which is logically equivalent to the contrapositive,



"\\displaystyle \\forall a,b\\in X,\\;\\;f(a)\\neq f(b)\\Rightarrow a\\neq b"

(More infomation: https://en.wikipedia.org/wiki/Injective_function)


Definition. A surjective function is a function whose image is equal to its codomain. Equivalently, a function "f"  with domain "X"  and codomain "Y"  is surjective, if for every "y"  in "Y" , there exists at least one "x"  in "X"  with "\\displaystyle f(x)=y" .

Symbolically,

If "\\displaystyle f\\colon X\\rightarrow Y" , then "\\displaystyle f"  is said to be surjective if



"\\displaystyle \\forall y\\in Y,\\,\\exists x\\in X,\\;\\;f(x)=y"

(More information: https://en.wikipedia.org/wiki/Surjective_function)


Hint: For all these questions, I will consider that "k\\equiv\\reals" .

In our case,

(1) "f : \\reals\\rightarrow\\reals^+;\\quad f(x)=x^2"

The function "f(x)=x^2" is not injective in the domain "D(f)=\\reals" , since



"(-3)^2=9=3^2,\\quad\\text{but}\\quad -3\\neq3"

Conclusion.



"\\boxed{f : \\reals\\rightarrow\\reals^+;\\quad f(x)=x^2-\\text{no inverse function}}"

(2) "f : \\reals^+\\rightarrow\\reals^+;\\quad f(x)=1\/x"

This function is surjective and injective, therefore the function has an inverse function.



"y=\\frac{1}{x}\\longrightarrow x=\\frac{1}{y}\\longrightarrow\\\\[0.3cm]\n\\boxed{f(x)=\\frac{1}{x}\\longrightarrow f^{-1}(x)=\\frac{1}{x}}"

Verification,



"f\\left(f^{-1}(x)\\right)=\\frac{1}{\\displaystyle\\frac{1}{x}}=x"

(3) "f : \\reals^+\\rightarrow\\reals^+;\\quad f(x)=x^2"

This function is surjective and injective, therefore the function has an inverse function.



"y=x^2\\longrightarrow x=\\sqrt{y}\\longrightarrow\\\\[0.3cm]\n\\boxed{f(x)=x^2\\longrightarrow f^{-1}(x)=\\sqrt{x}}"

Verification,



"f\\left(f^{-1}(x)\\right)=\\left(\\sqrt{x}\\right)^2=x"

ANSWER


(1) "f : \\reals\\rightarrow\\reals^+;\\quad f(x)=x^2"



"f : \\reals\\rightarrow\\reals^+;\\quad f(x)=x^2-\\text{no inverse function}"

(2) "f : \\reals^+\\rightarrow\\reals^+;\\quad f(x)=1\/x"



"f(x)=\\frac{1}{x}\\longrightarrow f^{-1}(x)=\\frac{1}{x}"

(3) "f : \\reals^+\\rightarrow\\reals^+;\\quad f(x)=x^2"



"f(x)=x^2\\longrightarrow f^{-1}(x)=\\sqrt{x}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS