A function is invertible if the function is surjective and injective.
(More infomartion: https://en.wikipedia.org/wiki/Inverse_function )
Definition. Let f f f be a function whose domain is a set X X X . The function f f f is said to be injective provided that for all a a a and b b b in X X X , whenever f ( a ) = f ( b ) f(a)=f(b) f ( a ) = f ( b ) , then a = b a=b a = b ; that is, f ( a ) = f ( b ) f(a)=f(b) f ( a ) = f ( b ) implies a = b a=b a = b . Equivalently, if a ≠ b a\neq b a = b , then f ( a ) ≠ f ( b ) f(a)\neq f(b) f ( a ) = f ( b ) .
Symbolically,
∀ a , b ∈ X , f ( a ) = f ( b ) ⇒ a = b \displaystyle \forall a,b\in X,\;\;f(a)=f(b)\Rightarrow a=b ∀ a , b ∈ X , f ( a ) = f ( b ) ⇒ a = b
which is logically equivalent to the contrapositive,
∀ a , b ∈ X , f ( a ) ≠ f ( b ) ⇒ a ≠ b \displaystyle \forall a,b\in X,\;\;f(a)\neq f(b)\Rightarrow a\neq b ∀ a , b ∈ X , f ( a ) = f ( b ) ⇒ a = b
(More infomation: https://en.wikipedia.org/wiki/Injective_function )
Definition. A surjective function is a function whose image is equal to its codomain. Equivalently, a function f f f with domain X X X and codomain Y Y Y is surjective, if for every y y y in Y Y Y , there exists at least one x x x in X X X with f ( x ) = y \displaystyle f(x)=y f ( x ) = y .
Symbolically,
If f : X → Y \displaystyle f\colon X\rightarrow Y f : X → Y , then f \displaystyle f f is said to be surjective if
∀ y ∈ Y , ∃ x ∈ X , f ( x ) = y \displaystyle \forall y\in Y,\,\exists x\in X,\;\;f(x)=y ∀ y ∈ Y , ∃ x ∈ X , f ( x ) = y
(More information: https://en.wikipedia.org/wiki/Surjective_function )
Hint: For all these questions, I will consider that k ≡ R k\equiv\reals k ≡ R .
In our case,
(1) f : R → R + ; f ( x ) = x 2 f : \reals\rightarrow\reals^+;\quad f(x)=x^2 f : R → R + ; f ( x ) = x 2
The function f ( x ) = x 2 f(x)=x^2 f ( x ) = x 2 is not injective in the domain D ( f ) = R D(f)=\reals D ( f ) = R , since
( − 3 ) 2 = 9 = 3 2 , but − 3 ≠ 3 (-3)^2=9=3^2,\quad\text{but}\quad -3\neq3 ( − 3 ) 2 = 9 = 3 2 , but − 3 = 3
Conclusion.
f : R → R + ; f ( x ) = x 2 − no inverse function \boxed{f : \reals\rightarrow\reals^+;\quad f(x)=x^2-\text{no inverse function}} f : R → R + ; f ( x ) = x 2 − no inverse function
(2) f : R + → R + ; f ( x ) = 1 / x f : \reals^+\rightarrow\reals^+;\quad f(x)=1/x f : R + → R + ; f ( x ) = 1/ x
This function is surjective and injective, therefore the function has an inverse function.
y = 1 x ⟶ x = 1 y ⟶ f ( x ) = 1 x ⟶ f − 1 ( x ) = 1 x y=\frac{1}{x}\longrightarrow x=\frac{1}{y}\longrightarrow\\[0.3cm]
\boxed{f(x)=\frac{1}{x}\longrightarrow f^{-1}(x)=\frac{1}{x}} y = x 1 ⟶ x = y 1 ⟶ f ( x ) = x 1 ⟶ f − 1 ( x ) = x 1
Verification,
f ( f − 1 ( x ) ) = 1 1 x = x f\left(f^{-1}(x)\right)=\frac{1}{\displaystyle\frac{1}{x}}=x f ( f − 1 ( x ) ) = x 1 1 = x
(3) f : R + → R + ; f ( x ) = x 2 f : \reals^+\rightarrow\reals^+;\quad f(x)=x^2 f : R + → R + ; f ( x ) = x 2
This function is surjective and injective, therefore the function has an inverse function.
y = x 2 ⟶ x = y ⟶ f ( x ) = x 2 ⟶ f − 1 ( x ) = x y=x^2\longrightarrow x=\sqrt{y}\longrightarrow\\[0.3cm]
\boxed{f(x)=x^2\longrightarrow f^{-1}(x)=\sqrt{x}} y = x 2 ⟶ x = y ⟶ f ( x ) = x 2 ⟶ f − 1 ( x ) = x
Verification,
f ( f − 1 ( x ) ) = ( x ) 2 = x f\left(f^{-1}(x)\right)=\left(\sqrt{x}\right)^2=x f ( f − 1 ( x ) ) = ( x ) 2 = x
ANSWER
(1) f : R → R + ; f ( x ) = x 2 f : \reals\rightarrow\reals^+;\quad f(x)=x^2 f : R → R + ; f ( x ) = x 2
f : R → R + ; f ( x ) = x 2 − no inverse function f : \reals\rightarrow\reals^+;\quad f(x)=x^2-\text{no inverse function} f : R → R + ; f ( x ) = x 2 − no inverse function
(2) f : R + → R + ; f ( x ) = 1 / x f : \reals^+\rightarrow\reals^+;\quad f(x)=1/x f : R + → R + ; f ( x ) = 1/ x
f ( x ) = 1 x ⟶ f − 1 ( x ) = 1 x f(x)=\frac{1}{x}\longrightarrow f^{-1}(x)=\frac{1}{x} f ( x ) = x 1 ⟶ f − 1 ( x ) = x 1
(3) f : R + → R + ; f ( x ) = x 2 f : \reals^+\rightarrow\reals^+;\quad f(x)=x^2 f : R + → R + ; f ( x ) = x 2
f ( x ) = x 2 ⟶ f − 1 ( x ) = x f(x)=x^2\longrightarrow f^{-1}(x)=\sqrt{x} f ( x ) = x 2 ⟶ f − 1 ( x ) = x
Comments