A function is invertible if the function is surjective and injective.
(More infomartion: https://en.wikipedia.org/wiki/Inverse_function)
Definition. Let "f"  be a function whose domain is a set "X" . The function "f"  is said to be injective provided that for all "a"  and "b"  in "X" , whenever "f(a)=f(b)" , then "a=b" ; that is, "f(a)=f(b)"  implies "a=b" . Equivalently, if "a\\neq b" , then "f(a)\\neq f(b)" .
Symbolically,
which is logically equivalent to the contrapositive,
(More infomation: https://en.wikipedia.org/wiki/Injective_function)
Definition. A surjective function is a function whose image is equal to its codomain. Equivalently, a function "f"  with domain "X"  and codomain "Y"  is surjective, if for every "y"  in "Y" , there exists at least one "x"  in "X"  with "\\displaystyle f(x)=y" .
Symbolically,
If "\\displaystyle f\\colon X\\rightarrow Y" , then "\\displaystyle f"  is said to be surjective if
(More information: https://en.wikipedia.org/wiki/Surjective_function)
Hint: For all these questions, I will consider that "k\\equiv\\reals" .
In our case,
(1) "f : \\reals\\rightarrow\\reals^+;\\quad f(x)=x^2"
The function "f(x)=x^2" is not injective in the domain "D(f)=\\reals" , since
Conclusion.
(2) "f : \\reals^+\\rightarrow\\reals^+;\\quad f(x)=1\/x"
This function is surjective and injective, therefore the function has an inverse function.
Verification,
(3) "f : \\reals^+\\rightarrow\\reals^+;\\quad f(x)=x^2"
This function is surjective and injective, therefore the function has an inverse function.
Verification,
ANSWER
(1) "f : \\reals\\rightarrow\\reals^+;\\quad f(x)=x^2"
(2) "f : \\reals^+\\rightarrow\\reals^+;\\quad f(x)=1\/x"
(3) "f : \\reals^+\\rightarrow\\reals^+;\\quad f(x)=x^2"
Comments
Leave a comment