"(1-x-x^2)^{10}=(1-x-x^2)^{9}(1-x-x^2)="
"=(1-x-x^2)\\sum_{a+b+c=9, a,b,c\\ge 0}1^a (-x)^b (-x^2)^c=(1-x-x^2) \\times"
"\\sum_{a+b+c=9, a,b,c\\ge 0} (-1)^{b+c}x^{b+2c}="
"=(x^{18}(-1)^9+x^{17}(-1)^9\\cdot 9+x^{16}((-1)^8\\cdot 9+(-1)^9\\cdot \\frac{9\\cdot8}2)+\\dots\n)(1-x-x^2)"
Hence, the answer is
"(-1)^9\\cdot 1+(-1)^9\\cdot9 \\cdot(-1)+((-1)^8\\cdot 9+(-1)^9\\cdot \\frac{9\\cdot8}2)\\cdot(-1)=35"
Comments
Leave a comment