Question #116849
Find the coefficient of x^18 in the expansion of (1-x-x^2)^10
1
Expert's answer
2020-05-20T18:36:26-0400

(1xx2)10=(1xx2)9(1xx2)=(1-x-x^2)^{10}=(1-x-x^2)^{9}(1-x-x^2)=

=(1xx2)a+b+c=9,a,b,c01a(x)b(x2)c=(1xx2)×=(1-x-x^2)\sum_{a+b+c=9, a,b,c\ge 0}1^a (-x)^b (-x^2)^c=(1-x-x^2) \times

a+b+c=9,a,b,c0(1)b+cxb+2c=\sum_{a+b+c=9, a,b,c\ge 0} (-1)^{b+c}x^{b+2c}=

=(x18(1)9+x17(1)99+x16((1)89+(1)9982)+)(1xx2)=(x^{18}(-1)^9+x^{17}(-1)^9\cdot 9+x^{16}((-1)^8\cdot 9+(-1)^9\cdot \frac{9\cdot8}2)+\dots )(1-x-x^2)

Hence, the answer is

(1)91+(1)99(1)+((1)89+(1)9982)(1)=35(-1)^9\cdot 1+(-1)^9\cdot9 \cdot(-1)+((-1)^8\cdot 9+(-1)^9\cdot \frac{9\cdot8}2)\cdot(-1)=35


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS