(1−x−x2)10=(1−x−x2)9(1−x−x2)=(1-x-x^2)^{10}=(1-x-x^2)^{9}(1-x-x^2)=(1−x−x2)10=(1−x−x2)9(1−x−x2)=
=(1−x−x2)∑a+b+c=9,a,b,c≥01a(−x)b(−x2)c=(1−x−x2)×=(1-x-x^2)\sum_{a+b+c=9, a,b,c\ge 0}1^a (-x)^b (-x^2)^c=(1-x-x^2) \times=(1−x−x2)∑a+b+c=9,a,b,c≥01a(−x)b(−x2)c=(1−x−x2)×
∑a+b+c=9,a,b,c≥0(−1)b+cxb+2c=\sum_{a+b+c=9, a,b,c\ge 0} (-1)^{b+c}x^{b+2c}=∑a+b+c=9,a,b,c≥0(−1)b+cxb+2c=
=(x18(−1)9+x17(−1)9⋅9+x16((−1)8⋅9+(−1)9⋅9⋅82)+… )(1−x−x2)=(x^{18}(-1)^9+x^{17}(-1)^9\cdot 9+x^{16}((-1)^8\cdot 9+(-1)^9\cdot \frac{9\cdot8}2)+\dots )(1-x-x^2)=(x18(−1)9+x17(−1)9⋅9+x16((−1)8⋅9+(−1)9⋅29⋅8)+…)(1−x−x2)
Hence, the answer is
(−1)9⋅1+(−1)9⋅9⋅(−1)+((−1)8⋅9+(−1)9⋅9⋅82)⋅(−1)=35(-1)^9\cdot 1+(-1)^9\cdot9 \cdot(-1)+((-1)^8\cdot 9+(-1)^9\cdot \frac{9\cdot8}2)\cdot(-1)=35(−1)9⋅1+(−1)9⋅9⋅(−1)+((−1)8⋅9+(−1)9⋅29⋅8)⋅(−1)=35
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments