Question #96309
Using integrating factor, solve the differential equation frac {dy}{dx}+y=e^{x}
1
Expert's answer
2019-10-11T09:41:30-0400

The linear first order differential equation:


dydx+P(x)y=Q(x)\frac {dy}{dx} + P(x)y = Q(x)


has the integrating factor (IF) : IF=eP(x)dxIF= e^{\int P (x) dx}


(1) dydx+y=ex\frac {dy}{dx}+y=e^{x} .


Integrating factor:


P(x)=1P(x) = 1 .


Integrating factor, IF=eP(x)dx=edx=exIF= \int e^{\int P (x) dx} = e^{\int dx}= e^{x}

IF=exIF= e^{x}


Multiply equation by IF:


exdydx+exy=exexe^x\frac {dy}{dx} + e^xy = e^xe^x

So,


exdydx+exy=e2xe^x\frac {dy}{dx} + e^xy = e^{2x} ,


i.e. ddx[exy]=e2x\frac {d}{dx}[ e^xy] = e^{2x}


Integrate:

exy=e2xdxe^xy = \int e^{2x} dx

i.e.

exy=12e2x+C,e^xy = \frac {1}{2}e^{2x} + C ,


y=ex[12e2x+C].y = e^{-x}[\frac {1}{2}e^{2x} + C].

.



Therefore, general solution of a Differential Equation (1):



y=12ex+Cexy = \frac {1}{2}e^{x} + Ce^{-x}

.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS