The linear first order differential equation:
dxdy+P(x)y=Q(x)
has the integrating factor (IF) : IF=e∫P(x)dx .
(1) dxdy+y=ex .
Integrating factor:
P(x)=1 .
Integrating factor, IF=∫e∫P(x)dx=e∫dx=ex
IF=ex
Multiply equation by IF:
exdxdy+exy=exex
So,
exdxdy+exy=e2x ,
i.e. dxd[exy]=e2x
Integrate:
exy=∫e2xdx
i.e.
exy=21e2x+C,
y=e−x[21e2x+C]. .
Therefore, general solution of a Differential Equation (1):
y=21ex+Ce−x .
Comments