let's rewrite the equation in the form
(2y2+2yet)dt+(y+et)dy=0
This is not an exact equation, because
∂y∂(2y2+2yet)=y+2et=et=∂t∂(y+et)
Therefore we need to find an integrating factor μ , such that
∂y∂μ(t)(2y2+2yet)=∂t∂μ(t)(y+et)
μ(t)(y+2et)=dtdμ(y+et)+μ(t)et
μ(t)(y+et)=dtdμ(y+et)
μ(t)=dtdμ
μ=et
Then
(et2y2+2ye2t)dt+(ety+e2t)dy=0
is an exact equation
Let's integrate
∫(et2y2+2ye2t)dt=et2y2+4ye2t+C(y)
Then
dyd(et2y2+4ye2t+C(y))=yet+4e2t+C′=yet+e2t
C′=−3e2t
C=−23e2t
Therefore, the solution of the equation will be
et2y2+4ye2t−23e2t=const
Comments