Question #95327
Find the general solution of the differential eq. y^2/2+2ye^t+(y+e^t)dy/dt=0
1
Expert's answer
2019-09-27T09:35:34-0400

let's rewrite the equation in the form

(y22+2yet)dt+(y+et)dy=0(\frac{y^2}{2}+2ye^t)dt+(y+e^t)dy=0

This is not an exact equation, because

y(y22+2yet)=y+2etet=t(y+et)\frac{\partial}{\partial y}(\frac{y^2}{2}+2ye^t)=y+2e^t\ne e^t=\frac{\partial}{\partial t}(y+e^t)

Therefore we need to find an integrating factor μ\mu , such that

yμ(t)(y22+2yet)=tμ(t)(y+et)\frac{\partial}{\partial y}\mu(t)(\frac{y^2}{2}+2ye^t)=\frac{\partial}{\partial t}\mu(t)(y+e^t)

μ(t)(y+2et)=dμdt(y+et)+μ(t)et\mu(t)(y+2e^t)=\frac{d\mu}{dt}(y+e^t)+\mu(t)e^t

μ(t)(y+et)=dμdt(y+et)\mu(t)(y+e^t)=\frac{d\mu}{dt}(y+e^t)

μ(t)=dμdt\mu(t)=\frac{d\mu}{dt}

μ=et\mu=e^t

Then

(ety22+2ye2t)dt+(ety+e2t)dy=0(e^t\frac{y^2}{2}+2ye^{2t})dt+(e^ty+e^{2t})dy=0

is an exact equation

Let's integrate

(ety22+2ye2t)dt=ety22+4ye2t+C(y)\int(e^t\frac{y^2}{2}+2ye^{2t})dt=e^t\frac{y^2}{2}+4ye^{2t}+C(y)

Then

ddy(ety22+4ye2t+C(y))=yet+4e2t+C=yet+e2t\frac{d}{dy}\left(e^t\frac{y^2}{2}+4ye^{2t}+C(y)\right)\\=ye^t+4e^{2t}+C'=ye^t+e^{2t}

C=3e2tC'=-3e^{2t}

C=3e2t2C=-\frac{3e^{2t}}{2}

Therefore, the solution of the equation will be

ety22+4ye2t3e2t2=conste^t\frac{y^2}{2}+4ye^{2t}-\frac{3e^{2t}}{2}=const


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS