Differeniate "x=cy^2": "dx=2cydy" , so "y'=\\frac{dy}{dx}=\\frac{1}{2cy}"
Express "c" from the initial equation: "c=\\frac{x}{y^2}". Then we have the differential equation of the family "x=cy^2" :"y'=\\frac{1}{2cy}=\\frac{1}{2y}\\cdot\\frac{y^2}{x}=\\frac{y}{2x}=f(x,y)".
So the differential equation of the orthogonal family is "y'=-\\frac{1}{f(x,y)}=-\\frac{2x}{y}"
Solve this equation:
"\\frac{dy}{dx}=-\\frac{2x}{y}"
"ydy+2xdx=0"
"d\\bigl(\\frac{y^2}{2}+x^2\\bigr)=0"
"\\frac{y^2}{2}+x^2=C"
We obtain the family of ellipses "\\frac{y^2}{2}+x^2=C=D^2" or "\\frac{x^2}{D^2}+\\frac{y^2}{2D^2}=1" "\\frac{x^2}{D^2}+\\frac{y^2}{2D^2}=1"
Answer: "\\frac{x^2}{D^2}+\\frac{y^2}{2D^2}=1"
Comments
Leave a comment