Consider u=f(x−vt+iαy).
Differentiating u partially with respect to x, we get
∂x∂u=f′(x−vt+iαy)∂x2∂2u=f′′(x−vt+iαy) Differentiating u partially with respect to y, we get
∂y∂u=f′(x−vt+iαy)⋅iα∂y2∂2u=f′′(x−vt+iαy)⋅(iα)2 Then
∂y2∂2u=−α2∂x2∂2u Differentiating u partially with respect to t, we get
∂t∂u=f′(x−vt+iαy)⋅(−v)∂t2∂2u=f′′(x−vt+iαy)⋅(−v)2 Then
∂t2∂2u=v2∂x2∂2u Substitute into the given equation
∂x2∂2u−α2∂x2∂2u=c2v2⋅∂x2∂2u Take
α2=1−c2v2
∂x2∂2u−(1−c2v2)∂x2∂2u=c2v2⋅∂x2∂2u
c2v2⋅∂x2∂2u=c2v2⋅∂x2∂2u
∂x2∂2u=∂x2∂2u, True Therefore, u=f(x−vt+iαy) satisfies the given differential equation and hence the solution of the equation.
Comments