Question #95277
If f and g are arbitrary function of their respective arguments, show that u= f( x -vt+i alpha y ) is a solution of (d^2u/dx^2 ) + (d^2u/dy^2) = (1/c^2) (d^2u/dt^2), where (alpha)^2 = 1-(v^2/c^2)?
1
Expert's answer
2019-09-27T09:04:56-0400

Consider u=f(xvt+iαy).u=f(x-vt+i\alpha y).

Differentiating uu partially with respect to x,x, we get


ux=f(xvt+iαy){\partial u \over \partial x}=f'(x-vt+i\alpha y)2ux2=f(xvt+iαy){\partial^2 u \over \partial x^2 }=f''(x-vt+i\alpha y)

Differentiating uu partially with respect to y,y, we get


uy=f(xvt+iαy)iα{\partial u \over \partial y}=f'(x-vt+i\alpha y)\cdot i\alpha2uy2=f(xvt+iαy)(iα)2{\partial^2 u \over \partial y^2 }=f''(x-vt+i\alpha y)\cdot (i\alpha)^2

Then


2uy2=α22ux2{\partial^2 u \over \partial y^2 }=-\alpha^2{\partial^2 u \over \partial x^2 }

Differentiating uu partially with respect to t,t, we get


ut=f(xvt+iαy)(v){\partial u \over \partial t}=f'(x-vt+i\alpha y)\cdot (-v)2ut2=f(xvt+iαy)(v)2{\partial^2u \over \partial t^2 }=f''(x-vt+i\alpha y)\cdot (-v)^2

Then


2ut2=v22ux2{\partial^2u \over \partial t^2 }=v^2 {\partial^2u \over \partial x^2 }

Substitute into the given equation


2ux2α22ux2=v2c22ux2{\partial^2u \over \partial x^2 }-\alpha^2{\partial^2u \over \partial x^2 }={v^2 \over c^2}\cdot {\partial^2u \over \partial x^2 }

Take

α2=1v2c2\alpha^2=1-{v^2 \over c^2}

2ux2(1v2c2)2ux2=v2c22ux2{\partial^2u \over \partial x^2 }-\bigg(1-{v^2 \over c^2}\bigg){\partial^2u \over \partial x^2 }={v^2 \over c^2}\cdot {\partial^2u \over \partial x^2 }

v2c22ux2=v2c22ux2{v^2 \over c^2}\cdot {\partial^2u \over \partial x^2 }={v^2 \over c^2}\cdot {\partial^2u \over \partial x^2 }

2ux2=2ux2, True{\partial^2u \over \partial x^2 }= {\partial^2u \over \partial x^2 },\ True

Therefore, u=f(xvt+iαy)u=f(x-vt+i\alpha y) satisfies the given differential equation and hence the solution of the equation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS