Introduce a Cartesian coordinate system, where the center of attraction is origin and "\\vec{r}(0)=x_0\\vec{e}_1"
We have "m\\vec{r}''=-\\alpha\\vec{r}" for some "\\alpha>0" . Let "\\frac{\\alpha}{m}=\\omega^2" , then "\\vec{r}''+\\omega^2\\vec{r}=0".
If "\\vec{r}=(x_1,\\ldots,x_n)", then "x_i''+\\omega^2 x_i=0" for all "i=1,\\ldots,n" .
So for all "i=1,\\ldots,n" we have the general solution "x_i=B_i\\cos\\omega t+C_i\\sin\\omega t="
"\\frac{1}{\\sqrt{B_i^2+C_i^2}}\\bigl(\\frac{B_i}{\\sqrt{B_i^2+C_i^2}}\\cos\\omega t+\\frac{C_i}{\\sqrt{B_i^2+C_i^2}}\\sin\\omega t\\bigr)="
"=A_i\\cos(\\omega t+\\omega_i)" , where "A_i=\\frac{1}{\\sqrt{B_i^2+C_i^2}}" and "\\omega_i" such number that "\\cos\\omega_i=\\frac{B_i}{\\sqrt{B_i^2+C_i^2}}" and "\\sin\\omega_i=-\\frac{C_i}{\\sqrt{B_i^2+C_i^2}}"
We obtain "\\vec{r}(t)=(A_1\\cos(\\omega t+\\omega_1),\\ldots,A_n\\cos(\\omega t+\\omega_n))".
Initial condition gives us "(x_0,0,\\ldots,0)=\\vec{r}(0)=(A_1\\cos\\omega_1,\\ldots,A_n\\cos\\omega_n)", so "A_1\\cos\\omega_1=x_0" and "A_i\\cos\\omega_i=0" while "i>1".
This means that 1)"A_1\\cos\\omega_1=x_0" and 2)"A_i=0" or "\\cos\\omega_i=0" for all "i>1".
Anyway, it was obtained that "\\vec{r}(t)=(A_1\\cos(\\omega t+\\omega_1),\\ldots,A_n\\cos(\\omega t+\\omega_n))" is an equation of simple harmonic motion.
Comments
Dear Rajni, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
You are so great....love you
Leave a comment