Question #95276
A mass m , free to move along a line is attracted towards a given point on the line with a force proportional to its distance from the given point.If the mass starts from rest at a distance x_o from the given point, show that the mass moves in a simple harmonic motion?
1
Expert's answer
2019-09-26T11:14:29-0400

Introduce a Cartesian coordinate system, where the center of attraction is origin and r(0)=x0e1\vec{r}(0)=x_0\vec{e}_1

We have mr=αrm\vec{r}''=-\alpha\vec{r} for some α>0\alpha>0 . Let αm=ω2\frac{\alpha}{m}=\omega^2 , then r+ω2r=0\vec{r}''+\omega^2\vec{r}=0.

If r=(x1,,xn)\vec{r}=(x_1,\ldots,x_n), then xi+ω2xi=0x_i''+\omega^2 x_i=0 for all i=1,,ni=1,\ldots,n .

So for all i=1,,ni=1,\ldots,n we have the general solution xi=Bicosωt+Cisinωt=x_i=B_i\cos\omega t+C_i\sin\omega t=

1Bi2+Ci2(BiBi2+Ci2cosωt+CiBi2+Ci2sinωt)=\frac{1}{\sqrt{B_i^2+C_i^2}}\bigl(\frac{B_i}{\sqrt{B_i^2+C_i^2}}\cos\omega t+\frac{C_i}{\sqrt{B_i^2+C_i^2}}\sin\omega t\bigr)=

=Aicos(ωt+ωi)=A_i\cos(\omega t+\omega_i) , where Ai=1Bi2+Ci2A_i=\frac{1}{\sqrt{B_i^2+C_i^2}} and ωi\omega_i such number that cosωi=BiBi2+Ci2\cos\omega_i=\frac{B_i}{\sqrt{B_i^2+C_i^2}} and sinωi=CiBi2+Ci2\sin\omega_i=-\frac{C_i}{\sqrt{B_i^2+C_i^2}}

We obtain r(t)=(A1cos(ωt+ω1),,Ancos(ωt+ωn))\vec{r}(t)=(A_1\cos(\omega t+\omega_1),\ldots,A_n\cos(\omega t+\omega_n)).

Initial condition gives us (x0,0,,0)=r(0)=(A1cosω1,,Ancosωn)(x_0,0,\ldots,0)=\vec{r}(0)=(A_1\cos\omega_1,\ldots,A_n\cos\omega_n), so A1cosω1=x0A_1\cos\omega_1=x_0 and Aicosωi=0A_i\cos\omega_i=0 while i>1i>1.

This means that 1)A1cosω1=x0A_1\cos\omega_1=x_0 and 2)Ai=0A_i=0 or cosωi=0\cos\omega_i=0 for all i>1i>1.

Anyway, it was obtained that r(t)=(A1cos(ωt+ω1),,Ancos(ωt+ωn))\vec{r}(t)=(A_1\cos(\omega t+\omega_1),\ldots,A_n\cos(\omega t+\omega_n)) is an equation of simple harmonic motion.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
27.09.19, 15:28

Dear Rajni, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Rajni
26.09.19, 20:12

You are so great....love you

LATEST TUTORIALS
APPROVED BY CLIENTS