First, let's consider some of the equalities associated with taking derivative of composite functions
dxdy2=2y⋅y′
dxdy′2=2y′⋅y′′
Then, multiplying both sides by y′
y′′+ω2y=0∣∣×2y′
we obtain
2y′⋅y′′+ω2⋅(2y′⋅y)=0
dxd(y′2)+dxd(ω2⋅y2)=0
Therefore, applying the sum rule
dxd(y′2+ω2⋅y2)=0
y′2+ω2⋅y2=C2
Resolving this equation we get
y′=±C2−ω2⋅y2
C2−ω2⋅y2dy=±dx
∫C2−ω2⋅y2dy=±x+C1
We introduce a substitution
u=Cω⋅y
du=Cω⋅dy
∫ωC1−u2Cdu=±x+C1
ω1arcsin(u)=±x+C1
arcsin(u)=ω(±x+C1)
u=sin(ω((±x+C1)))
Cω⋅y=sin(ω((±x+C1))
y=ωCsin(ω((±x+C1))
Comments