First, let's consider some of the equalities associated with taking derivative of composite functions
d d x y 2 = 2 y ⋅ y ′ \frac{d}{dx}y^2=2y⋅y′ d x d y 2 = 2 y ⋅ y ′
d d x y ′ 2 = 2 y ′ ⋅ y ′ ′ \frac{d}{dx}y'^2=2y'⋅y'' d x d y ′2 = 2 y ′ ⋅ y ′′
Then, multiplying both sides by y ′ y' y ′
y ′′ + ω 2 y = 0 ∣ ∣ × 2 y ′ y
′′
+ω^2
y=0|| \times 2y
′ y ′′ + ω 2 y = 0∣∣ × 2 y ′
we obtain
2 y ′ ⋅ y ′′ + ω 2 ⋅ ( 2 y ′ ⋅ y ) = 0 2y
′
⋅y
′′
+ω^
2
⋅(2y
′
⋅y)=0 2 y ′ ⋅ y ′′ + ω 2 ⋅ ( 2 y ′ ⋅ y ) = 0
d d x ( y ′ 2 ) + d d x ( ω 2 ⋅ y 2 ) = 0 \frac{d}{dx}
(y'^2
)+
\frac{d}{dx}
(ω^2
⋅y^2
)=0 d x d ( y ′2 ) + d x d ( ω 2 ⋅ y 2 ) = 0
Therefore, applying the sum rule
d d x ( y ′ 2 + ω 2 ⋅ y 2 ) = 0 \frac{d}{dx}
(y'^2
+ω^2
⋅y^2
)=0 d x d ( y ′2 + ω 2 ⋅ y 2 ) = 0
y ′ 2 + ω 2 ⋅ y 2 = C 2 y'^2
+ω^2
⋅y^2=C^2 y ′2 + ω 2 ⋅ y 2 = C 2
Resolving this equation we get
y ′ = ± C 2 − ω 2 ⋅ y 2 y'=\pm\sqrt{C^2-ω^2
⋅y^2} y ′ = ± C 2 − ω 2 ⋅ y 2
d y C 2 − ω 2 ⋅ y 2 = ± d x \frac{dy}{\sqrt{C^2-ω^2
⋅y^2}}=\pm dx C 2 − ω 2 ⋅ y 2 d y = ± d x
∫ d y C 2 − ω 2 ⋅ y 2 = ± x + C 1 \int \frac{dy}{\sqrt{C^2-ω^2
⋅y^2}}=\pm x+C_1 ∫ C 2 − ω 2 ⋅ y 2 d y = ± x + C 1
We introduce a substitution
u = ω ⋅ y C u=\frac{ω⋅y}{C}
u = C ω ⋅ y
d u = ω ⋅ d y C du=\frac{ω⋅dy}{C} d u = C ω ⋅ d y
∫ C d u ω C 1 − u 2 = ± x + C 1 \int \frac{Cdu}{ωC\sqrt{1-u^2}}=\pm x+C_1 ∫ ω C 1 − u 2 C d u = ± x + C 1
1 ω arcsin ( u ) = ± x + C 1 \frac{1}{ω}\arcsin(u)=\pm x+C_1 ω 1 arcsin ( u ) = ± x + C 1
arcsin ( u ) = ω ( ± x + C 1 ) \arcsin(u)=ω(\pm x+C_1) arcsin ( u ) = ω ( ± x + C 1 )
u = sin ( ω ( ( ± x + C 1 ) ) ) u=\sin(ω((\pm x+C_1))) u = sin ( ω (( ± x + C 1 )))
ω ⋅ y C = sin ( ω ( ( ± x + C 1 ) ) \frac{ω⋅y}{C}=\sin(ω((\pm x+C_1)) C ω ⋅ y = sin ( ω (( ± x + C 1 ))
y = C ω sin ( ω ( ( ± x + C 1 ) ) y=\frac{C}{ω}\sin(ω((\pm x+C_1)) y = ω C sin ( ω (( ± x + C 1 ))
Comments