Question #95273
Obtain the Riccati equation associated with the equation y"+w^2 y=0 and hence find its solution?
1
Expert's answer
2019-09-27T09:22:11-0400

First, let's consider some of the equalities associated with taking derivative of composite functions

ddxy2=2yy\frac{d}{dx}y^2=2y⋅y′

ddxy2=2yy\frac{d}{dx}y'^2=2y'⋅y''

Then, multiplying both sides by yy'

y′′+ω2y=0×2yy ′′ +ω^2 y=0|| \times 2y ′

we obtain

2yy′′+ω2(2yy)=02y ′ ⋅y ′′ +ω^ 2 ⋅(2y ′ ⋅y)=0

ddx(y2)+ddx(ω2y2)=0\frac{d}{dx} ​ (y'^2 )+ \frac{d}{dx} ​ (ω^2 ⋅y^2 )=0

Therefore, applying the sum rule

ddx(y2+ω2y2)=0\frac{d}{dx} ​ (y'^2 +ω^2 ⋅y^2 )=0

y2+ω2y2=C2y'^2 +ω^2 ⋅y^2=C^2

Resolving this equation we get

y=±C2ω2y2y'=\pm\sqrt{C^2-ω^2 ⋅y^2}

dyC2ω2y2=±dx\frac{dy}{\sqrt{C^2-ω^2 ⋅y^2}}=\pm dx

dyC2ω2y2=±x+C1\int \frac{dy}{\sqrt{C^2-ω^2 ⋅y^2}}=\pm x+C_1

We introduce a substitution

u=ωyCu=\frac{ω⋅y}{C} ​

du=ωdyCdu=\frac{ω⋅dy}{C}

CduωC1u2=±x+C1\int \frac{Cdu}{ωC\sqrt{1-u^2}}=\pm x+C_1

1ωarcsin(u)=±x+C1\frac{1}{ω}\arcsin(u)=\pm x+C_1

arcsin(u)=ω(±x+C1)\arcsin(u)=ω(\pm x+C_1)

u=sin(ω((±x+C1)))u=\sin(ω((\pm x+C_1)))

ωyC=sin(ω((±x+C1))\frac{ω⋅y}{C}=\sin(ω((\pm x+C_1))

y=Cωsin(ω((±x+C1))y=\frac{C}{ω}\sin(ω((\pm x+C_1))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS