Solution of Pfaffian Differential equation in three variables.
Verify the Pfaffian Differential equation
(y2+yz)dx+(xz+z2)dy+(y2−xy)dz=0 is integrable and find its prmitive.
The necessary and sufficient condition for iintegrability is
X⋅curlX=0
X=(y2+yz,xz+z2,y2−xy) so that
∇×X=∣∣i∂x∂y2+yzj∂y∂xz+z2k∂z∂y2−xy∣∣==(2y−x−x−2z)i+(y+y)j+(z−2y−z)k==(2y−2x−2z)i+(2y)j+(−2y)k
X⋅(∇×X)=2y3−2xy2−2y2z+2y2z−−2xyz−2yz2+2xyz+2yz2−2y3+2xy2=0Thus the given equation is integrable.
Solve by Inspection
y(y+z)dx+z(x+z)dy+y(y−x)dz=0 Or
y(y+z)dx+y(y+z)dz−y(y+z)dz++z(x+z)dy+y(x+z)dy−y(x+z)dy++y(y−x)dz=0 Or
y(y+z)d(x+z)+(y+z)(x+z)dy−−ydz(y+z−y+x)−y(x+z)dy=0 Or
y(y+z)d(x+z)+(y+z)(x+z)dy−y(x+z)d(y+z)=0
x+zd(x+z)+ydy−y+zd(y+z)=0 The complete primitive is given as
y(x+z)=c(y+z)
Comments
Dear Pramod Pammu, thank you for leaving a comment.
(y 2 -yz)dx+(xz+z 2 )dy+(y 2 −xy)dz=0 here P= (y^2+yz) , Q=(xz+z^2) , R=(y^2-xy)