Question #94680
solve differential (y^2+yz)dx+(xz+z^2)dy+(y^2-xy)dz=0 please sir tell name of the form of which differential equation.and explain
1
Expert's answer
2019-09-23T07:06:40-0400

Solution of Pfaffian Differential equation in three variables.

Verify the Pfaffian Differential equation


(y2+yz)dx+(xz+z2)dy+(y2xy)dz=0(y^2+yz)dx+(xz+z^2)dy+(y^2-xy)dz=0

is integrable and find its prmitive.

The necessary and sufficient condition for iintegrability is


XcurlX=0\bm{X}\cdot curl \bm{X}=0

X=(y2+yz,xz+z2,y2xy)\bm{X}=(y^2+yz,xz+z^2,y^2-xy) so that


×X=ijkxyzy2+yzxz+z2y2xy=\bm{ \nabla}\times\bm{X}=\begin{vmatrix} \bf{i} & \bf{j} & \bf{k} \\ {\partial\over \partial x} & {\partial\over \partial y} & {\partial\over \partial z} \\ y^2+yz & xz+z^2 & y^2-xy \end{vmatrix}==(2yxx2z)i+(y+y)j+(z2yz)k==(2y-x-x-2z){\bf{i}}+(y+y){\bf{j}} + (z-2y-z){\bf{k}}==(2y2x2z)i+(2y)j+(2y)k=(2y-2x-2z){\bf{i}}+(2y){\bf{j}} + (-2y){\bf{k}}


X(×X)=2y32xy22y2z+2y2z\bm{X}\cdot (\bm{ \nabla}\times\bm{X})=2y^3-2xy^2-2y^2z+2y^2z-2xyz2yz2+2xyz+2yz22y3+2xy2=0-2xyz-2yz^2+2xyz+2yz^2-2y^3+2xy^2=0

Thus the given equation is integrable.

Solve by Inspection


y(y+z)dx+z(x+z)dy+y(yx)dz=0y(y+z)dx+z(x+z)dy+y(y-x)dz=0

Or


y(y+z)dx+y(y+z)dzy(y+z)dz+y(y+z)dx+y(y+z)dz-y(y+z)dz++z(x+z)dy+y(x+z)dyy(x+z)dy++z(x+z)dy+y(x+z)dy-y(x+z)dy++y(yx)dz=0+y(y-x)dz=0

Or


y(y+z)d(x+z)+(y+z)(x+z)dyy(y+z)d(x+z)+(y+z)(x+z)dy-ydz(y+zy+x)y(x+z)dy=0-ydz(y+z-y+x)-y(x+z)dy=0

Or


y(y+z)d(x+z)+(y+z)(x+z)dyy(x+z)d(y+z)=0y(y+z)d(x+z)+(y+z)(x+z)dy-y(x+z)d(y+z)=0

d(x+z)x+z+dyyd(y+z)y+z=0{d(x+z) \over x+z}+{dy\over y}-{d(y+z) \over y+z}=0

The complete primitive is given as


y(x+z)=c(y+z)y(x+z)=c(y+z)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
31.08.20, 20:20

Dear Pramod Pammu, thank you for leaving a comment.

Pramod Pammu
31.08.20, 19:19

(y 2 -yz)dx+(xz+z 2 )dy+(y 2 −xy)dz=0 here P= (y^2+yz) , Q=(xz+z^2) , R=(y^2-xy)

LATEST TUTORIALS
APPROVED BY CLIENTS