Let y=n=0∑∞anxn
Then
y′=n=1∑∞nanxn−1
y′′=n=2∑∞n(n−1)anxn−2
After reidexing the series, we will have
y′=n=0∑∞(n+1)an+1xn
y′′=n=0∑∞(n+2)(n+1)an+2xn
Plugging y′ and y′′ into the equation will lead us to
(x2−1)n=0∑∞(n+2)(n+1)an+2xn+3xn=0∑∞(n+1)an+1xn+xn=0∑∞anxn=0
n=0∑∞(n+2)(n+1)an+2xn+2−n=0∑∞(n+2)(n+1)an+2xn+n=0∑∞3(n+1)an+1xn+1+n=0∑∞anxn+1=0
Let's transform the series in the right hand side
2a2+(6a3+3a1+a0)x+n=2∑∞n(n−1)anxn−n=2∑∞(n+2)(n+1)an+2xn+
+n=2∑∞(3nan+an−1)xn=2a2+(6a3+3a1+a0)x+n=2∑∞(n(n−1)an+(n+2)(n+1)an+2+
+3nan+an−1)xn
As this series is supposed to be equal to 0, we know that the coefficients of the resulting series must be equal to 0. Therefore,
2a2=0
6a3+3a1+a0=0
n(n−1)an+(n+2)(n+1)an+2+3nan+an−1=0.n≥2
(n2+2n)an+(n+2)(n+1)an+2+an−1=0
an+2=−(n+2)(n+1)(n2+2n)an+an−1)
Plug in a0=0;a1=1 we find the first solution
6a3+3=0a3=−21
a4=−(2+2)(2+1)(22+4)a2+a1)=−121
a5=−(3+2)(3+1)(9+6)a3+a2=−20−215=83
a6=−(4+2)(4+1)(14+8)a4+a3=−30−1222−21=907
Therefore
y1=x−21x3−121x4+83x5+907x6+...
Plug in a0=1,a1=0 we find the second solution
6a3+1=0a3=−61
a4=−(2+2)(2+1)(22+4)a2+a1)=0
a5=−(3+2)(3+1)(9+6)a3+a2=−20−615=81
a6=−(4+2)(4+1)(14+8)a4+a3=−30−61=1801
Therefore
y2=1−61x3+81x5+1801x6+...
Comments