Question #94078
Solve the following ODE using the power series method:
(x2 −1) y′′ + 3xy′ + xy = 0
1
Expert's answer
2019-09-11T10:33:36-0400

Let y=n=0anxny=\sum\limits_{n=0}^{\infty}a_nx^n

Then

y=n=1nanxn1y'=\sum\limits_{n=1}^{\infty}na_{n}x^{n-1}

y=n=2n(n1)anxn2y''=\sum\limits_{n=2}^{\infty}n(n-1)a_{n}x^{n-2}

After reidexing the series, we will have

y=n=0(n+1)an+1xny'=\sum\limits_{n=0}^{\infty}(n+1)a_{n+1}x^{n}

y=n=0(n+2)(n+1)an+2xny''=\sum\limits_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^{n}


Plugging yy' and yy'' into the equation will lead us to

(x21)n=0(n+2)(n+1)an+2xn+3xn=0(n+1)an+1xn+xn=0anxn=0(x^2-1)\sum\limits_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^{n}+3x\sum\limits_{n=0}^{\infty}(n+1)a_{n+1}x^{n}+x\sum\limits_{n=0}^{\infty}a_nx^n=0


n=0(n+2)(n+1)an+2xn+2n=0(n+2)(n+1)an+2xn+n=03(n+1)an+1xn+1+n=0anxn+1=0\sum\limits_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^{n+2}-\sum\limits_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^{n}+\sum\limits_{n=0}^{\infty}3(n+1)a_{n+1}x^{n+1}+\sum\limits_{n=0}^{\infty}a_nx^{n+1}=0

Let's transform the series in the right hand side


2a2+(6a3+3a1+a0)x+n=2n(n1)anxnn=2(n+2)(n+1)an+2xn+2a_2+(6a_3+3a_1+a_0)x+\sum\limits_{n=2}^{\infty}n(n-1)a_{n}x^{n}-\sum\limits_{n=2}^{\infty}(n+2)(n+1)a_{n+2}x^{n}+

+n=2(3nan+an1)xn=2a2+(6a3+3a1+a0)x+n=2(n(n1)an+(n+2)(n+1)an+2++\sum\limits_{n=2}^{\infty}\left(3na_{n}+a_{n-1}\right)x^{n}=2a_2+(6a_3+3a_1+a_0)x+\sum\limits_{n=2}^{\infty}\left(n(n-1)a_{n}+(n+2)(n+1)a_{n+2}+\right.

+3nan+an1)xn\left.+3na_{n}+a_{n-1}\right)x^n

As this series is supposed to be equal to 0, we know that the coefficients of the resulting series must be equal to 0. Therefore,

2a2=02a_2=0

6a3+3a1+a0=06a_3+3a_1+a_0=0

n(n1)an+(n+2)(n+1)an+2+3nan+an1=0.n2n(n-1)a_{n}+(n+2)(n+1)a_{n+2}+3na_{n}+a_{n-1}=0.\quad n\ge2

(n2+2n)an+(n+2)(n+1)an+2+an1=0(n^2+2n)a_n+(n+2)(n+1)a_{n+2}+a_{n-1}=0

an+2=(n2+2n)an+an1)(n+2)(n+1)a_{n+2}=-\frac{(n^2+2n)a_n+a_{n-1})}{(n+2)(n+1)}

Plug in a0=0;a1=1a_0=0;\quad a_1=1 we find the first solution

6a3+3=0a3=126a_3+3=0\quad a_3=-\frac{1}{2}

a4=(22+4)a2+a1)(2+2)(2+1)=112a_{4}=-\frac{(2^2+4)a_2+a_{1})}{(2+2)(2+1)}=-\frac{1}{12}


a5=(9+6)a3+a2(3+2)(3+1)=15220=38a_5=-\frac{(9+6)a_3+a_2}{(3+2)(3+1)}=-\frac{-\frac{15}{2}}{20}=\frac{3}{8}

a6=(14+8)a4+a3(4+2)(4+1)=22121230=790a_6=-\frac{(14+8)a_4+a_3}{(4+2)(4+1)}=-\frac{-\frac{22}{12}-\frac{1}{2}}{30}=\frac{7}{90}

Therefore

y1=x12x3112x4+38x5+790x6+...y_1=x-\frac{1}{2}x^3-\frac{1}{12}x^4+\frac{3}{8}x^5+\frac{7}{90}x^6+...

Plug in a0=1,a1=0a_0=1,\quad a_1=0 we find the second solution

6a3+1=0a3=166a_3+1=0\quad a_3=-\frac{1}{6}

a4=(22+4)a2+a1)(2+2)(2+1)=0a_{4}=-\frac{(2^2+4)a_2+a_{1})}{(2+2)(2+1)}=0

a5=(9+6)a3+a2(3+2)(3+1)=15620=18a_5=-\frac{(9+6)a_3+a_2}{(3+2)(3+1)}=-\frac{-\frac{15}{6}}{20}=\frac{1}{8}

a6=(14+8)a4+a3(4+2)(4+1)=1630=1180a_6=-\frac{(14+8)a_4+a_3}{(4+2)(4+1)}=-\frac{-\frac{1}{6}}{30}=\frac{1}{180}

Therefore

y2=116x3+18x5+1180x6+...y_2=1-\frac{1}{6}x^3+\frac{1}{8}x^5+\frac{1}{180}x^6+...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS