Find the integral surface of the partial differential equation (x-y)y^2p+(y-x)x2q=(x^2+y^2) which passes through xz= a^3,y=0
Auxiliary equations
"{dx \\over (x-y)y^2}={dy \\over (y-x)x^2}""x^2dx=-y^2dy""x^3+y^3=C_1"
"{dx-dy \\over xy^2-y^3-yx^2+x^3}={dz \\over x^2+y^2}""{d(x-y) \\over (x-y)(x^2+y^2)}={dz \\over x^2+y^2}"
"{d(x-y) \\over x-y}={dz \\over 1}""\\ln |x-y|=z+\\ln C_2""|x-y|=C_2e^z""F(x^3+y^2, |x-y|e^{-z})=0"
For "xz=a^3, y=0"
The integral surface
Comments
Leave a comment