Question #93969
Solve the following

dy/dx=(x-y-2)/(x+y+6)
1
Expert's answer
2019-09-09T11:41:57-0400

(x+y+6)dy=(xy2)dx(x+y+6)dy=(x-y-2)dx

(2+yx)dx+(x+y+6)dy=0(2+y-x)dx+(x+y+6)dy=0

Let M=2+yx, N=x+y+6M=2+y-x, \ N=x+y+6

My=1=NxM_y'=1=N_x' , so the given equation is exact.

And there is function F(x,y): Fx=M, Fy=NF(x,y):\ F'_x=M,\ F'_y=N

Fx=2+yx,F=(2+yx)dx=2x+yxx2/2+h(y)F'_x=2+y-x,\\ F=\int (2+y-x)dx=2x+yx-x^2/2+h(y)

Fy=(2x+yxx2/2+h(y))y=x+hyF'_y=(2x+yx-x^2/2+h(y))'_y=x+h'_y

x+hy=x+y+6, hy=y+6,h(y)=(y+6)dy=y2/2+6yx+h'_y=x+y+6,\ h'_y=y+6,\\ h(y)=\int (y+6)dy=y^2/2+6y

F(x,y)=2x+xyx2/2+y2/2+6y=C, C is constantF(x,y)=2x+xy-x^2/2+y^2/2+6y=C,\ C\ is\ constant

y2+2y(6+x)x2+4x2C=0y^2+2y(6+x)-x^2+4x-2C=0

Using the quadratic formula

y=6x±(6+x)2(x2+4x2C)=6x±36+12x+x2+x24x+2C=6x±2x2+8x+36+2Cy=-6-x\pm \sqrt{(6+x)^2-(-x^2+4x-2C)}=\\ -6-x\pm\sqrt{36+12x+x^2+x^2-4x+2C}=\\ -6-x\pm\sqrt{2x^2+8x+36+2C}

Since x+y+6x+y+6 is in the denominator

x+y+60, 2x2+8x+36+2C0.x2+4x+18+C0(x+2)2+14+C0x±14C2x+y+6\not= 0, \ 2x^2+8x+36+2C\not=0.\\ x^2+4x+18+C\not=0\\ (x+2)^2+14+C\not=0\\ x\not=\pm\sqrt{-14-C}-2

Answer: y=6x±2x2+8x+36+2Cy=-6-x\pm\sqrt{2x^2+8x+36+2C} ,x±14C2x\not=\pm\sqrt{-14-C}-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS