(x+y+6)dy=(x−y−2)dx
(2+y−x)dx+(x+y+6)dy=0
Let M=2+y−x, N=x+y+6
My′=1=Nx′ , so the given equation is exact.
And there is function F(x,y): Fx′=M, Fy′=N
Fx′=2+y−x,F=∫(2+y−x)dx=2x+yx−x2/2+h(y)
Fy′=(2x+yx−x2/2+h(y))y′=x+hy′
x+hy′=x+y+6, hy′=y+6,h(y)=∫(y+6)dy=y2/2+6y
F(x,y)=2x+xy−x2/2+y2/2+6y=C, C is constant
y2+2y(6+x)−x2+4x−2C=0
Using the quadratic formula
y=−6−x±(6+x)2−(−x2+4x−2C)=−6−x±36+12x+x2+x2−4x+2C=−6−x±2x2+8x+36+2C
Since x+y+6 is in the denominator
x+y+6=0, 2x2+8x+36+2C=0.x2+4x+18+C=0(x+2)2+14+C=0x=±−14−C−2
Answer: y=−6−x±2x2+8x+36+2C ,x=±−14−C−2
Comments