Question #93807

y(y2+1)dx+x(y2−1)dy=0


1
Expert's answer
2019-09-05T09:09:31-0400

 Separate the variables by moving all the y terms to one side of the equation and all the x terms to the other side:


x(y21)dy=y(y2+1)dxx(y^2-1)dy=-y(y^2+1)dx(y21)dy=y(y2+1)dxx(y^2-1)dy=-\frac{y(y^2+1)dx}{x}y21y(y2+1)dy=dxx\frac{y^2-1}{y(y^2+1)}dy=-\frac{dx}{x}

Integrate both sides of the equation :


y21y(y2+1)dy=dxx\int\frac{y^2-1}{y(y^2+1)}dy=-\int\frac{dx}{x}

Solve the first integral using partial fractions:


y21y(y2+1)=Ay+By+Cy2+1=A(y2+1)+(By+C)yy(y2+1)\frac{y^2-1}{y(y^2+1)}=\frac{A}{y}+\frac{By+C}{y^2+1}=\frac{A(y^2+1)+(By+C)y}{y(y^2+1)}

Then

y21=A(y2+1)+(By+C)yy^2-1=A(y^2+1)+(By+C)yy21=Ay2+A+By2+Cyy^2-1=Ay^2+A+By^2 +Cyy21=(A+B)y2+A+Cyy^2-1=(A+B)y^2+A+Cy{A+B=1A=1C=0\begin{cases} A+B=1 \\ A=-1 \\ C=0 \end{cases}{A=1B=2C=0\begin{cases} A=-1\\ B=2 \\C=0 \end{cases}

Hence


y21y(y2+1)dy=(1y+2yy2+1)dy=\int\frac{y^2-1}{y(y^2+1)}dy=\int(-\frac{1}{y}+\frac{2y}{y^2+1})dy=

=dyy+d(y2+1)y2+1=lny+ln(y2+1)=-\int\frac{dy}{y}+\int\frac{d(y^2+1)}{y^2+1}=-ln y+ln (y^2+1)

Then the solution of the differential equation is:


lny+ln(y2+1)=dxx-ln y+ln (y^2+1)=-\int\frac{dx}{x}lny2+1y=lnx+lnCln\frac{y^2+1}{y}=-ln{x}+ln{C}lny2+1y=lnCxln\frac{y^2+1}{y}=ln\frac{C}{x}y2+1y=Cx\frac{y^2+1}{y}=\frac{C}{x}

Solve for y:


y2+1=Cxyy^2+1=\frac{C}{x}yy2Cxy+1=0y^2-\frac{C}{x}y+1=0


y=Cx±C2x242y=\frac{\frac{C}{x}\pm\sqrt{\frac{C^2}{x^2}-4}}{2}y=Cx±C24x2x2y=\frac{\frac{C}{x}\pm\frac{\sqrt{C^2-4x^2}}{x}}{2}y=C±C24x22xy=\frac{C\pm\sqrt{C^2-4x^2}}{2x}

Answer: y=C±C24x22xy=\frac{C\pm\sqrt{C^2-4x^2}}{2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS