Separate the variables by moving all the y terms to one side of the equation and all the x terms to the other side:
x(y2−1)dy=−y(y2+1)dx(y2−1)dy=−xy(y2+1)dxy(y2+1)y2−1dy=−xdx Integrate both sides of the equation :
∫y(y2+1)y2−1dy=−∫xdxSolve the first integral using partial fractions:
y(y2+1)y2−1=yA+y2+1By+C=y(y2+1)A(y2+1)+(By+C)y Then
y2−1=A(y2+1)+(By+C)yy2−1=Ay2+A+By2+Cyy2−1=(A+B)y2+A+Cy⎩⎨⎧A+B=1A=−1C=0⎩⎨⎧A=−1B=2C=0 Hence
∫y(y2+1)y2−1dy=∫(−y1+y2+12y)dy=
=−∫ydy+∫y2+1d(y2+1)=−lny+ln(y2+1) Then the solution of the differential equation is:
−lny+ln(y2+1)=−∫xdxlnyy2+1=−lnx+lnClnyy2+1=lnxCyy2+1=xC Solve for y:
y2+1=xCyy2−xCy+1=0
y=2xC±x2C2−4y=2xC±xC2−4x2y=2xC±C2−4x2
Answer: y=2xC±C2−4x2
Comments