Let (x,y=Y)(x, \quad y=Y)(x,y=Y) be the intersection point of the curves
y=xc⊥Y=Y(x),x>0,y>0.y=\sqrt{\frac xc} \quad \perp \quad Y=Y(x), \quad x>0, \quad y>0.y=cx⊥Y=Y(x),x>0,y>0.
Then
Y′=−1y′=−2cx.Y'=-\frac{1}{y'}=-2\sqrt{cx}.Y′=−y′1=−2cx.
But c=xy2c=\frac{x}{y^2}c=y2x . Therefore
Y′=−2xYorY2+2x2=C.Y'=-\frac{2x}{Y} \quad \text{or} \quad Y^2+2x^2=C.Y′=−Y2xorY2+2x2=C.
We set the family of ellipses
x2a2+y22a2=1.\frac{x^2}{a^2}+\frac{y^2}{2a^2}=1.a2x2+2a2y2=1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments