Question #93399
Solve :
(D²-2DD´+D´²)z = 12xy
1
Expert's answer
2019-08-28T05:02:16-0400

Consider a quadratic form x22xy+y2x^2-2xy+y^2 (for a differential equation A112zx2+A122zxy+A222zy2+=0A_{11}\frac{\partial^2 z}{\partial x^2}+A_{12}\frac{\partial^2 z}{\partial x\partial y}+A_{22}\frac{\partial^2 z}{\partial y^2}+\ldots=0 we consider a quadratic form A11x2+A12xy+A22y2A_{11}x^2+A_{12}xy+A_{22}y^2 ). Its matrix is (1111)\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} with eigenvectors (1,1)(1,1) and (1,1)(1,-1) .

So we have change of the variables: u=1x+1y=x+yu=1\cdot x+1\cdot y = x+y and v=1x+(1)y=xyv=1\cdot x+(-1)\cdot y = x-y .

Then fx=fuux+fvvx=fu+fv\frac{\partial f}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}=\frac{\partial f}{\partial u}+\frac{\partial f}{\partial v} and fy=fuuy+fvvy=fufv\frac{\partial f}{\partial y}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}=\frac{\partial f}{\partial u}-\frac{\partial f}{\partial v} . Move from the variables x,yx,y to the variables u,vu,v .

In case f=zf=z we have zx=zu+zv\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v} and zy=zuzv\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v} .

In case f=zxf=\frac{\partial z}{\partial x} we have 2zx2=x(zx)=u(zx)+v(zx)=2zu2+22zuv+2zv2\frac{\partial^2 z}{\partial x^2}=\frac{\partial}{\partial x}\bigl(\frac{\partial z}{\partial x}\bigr)=\frac{\partial}{\partial u}\bigl(\frac{\partial z}{\partial x}\bigr)+\frac{\partial}{\partial v}\bigl(\frac{\partial z}{\partial x}\bigr)=\frac{\partial^2 z}{\partial u^2}+2\frac{\partial^2 z}{\partial u\partial v}+\frac{\partial^2 z}{\partial v^2} and 2zxy=y(zx)=u(zx)v(zx)=2zu22zv2\frac{\partial^2 z}{\partial x\partial y}=\frac{\partial}{\partial y}\bigl(\frac{\partial z}{\partial x}\bigr)=\frac{\partial}{\partial u}\bigl(\frac{\partial z}{\partial x}\bigr)-\frac{\partial}{\partial v}\bigl(\frac{\partial z}{\partial x}\bigr)=\frac{\partial^2 z}{\partial u^2}-\frac{\partial^2 z}{\partial v^2}

In case f=zyf=\frac{\partial z}{\partial y} we have 2zy2=y(zy)=u(zy)v(zy)=2zu222zuv+2zv2\frac{\partial^2 z}{\partial y^2}=\frac{\partial}{\partial y}\bigl(\frac{\partial z}{\partial y}\bigr)=\frac{\partial}{\partial u}\bigl(\frac{\partial z}{\partial y}\bigr)-\frac{\partial}{\partial v}\bigl(\frac{\partial z}{\partial y}\bigr)=\frac{\partial^2 z}{\partial u^2}-2\frac{\partial^2 z}{\partial u\partial v}+\frac{\partial^2 z}{\partial v^2} .

In addition x=u+v2x=\frac{u+v}{2} and y=uv2y=\frac{u-v}{2} .

Rewrite the original equation: (2zu2+22zuv+2zv2)2(2zu22zv2)+\bigl(\frac{\partial^2 z}{\partial u^2}+2\frac{\partial^2 z}{\partial u\partial v}+\frac{\partial^2 z}{\partial v^2}\bigr)-2\bigl(\frac{\partial^2 z}{\partial u^2}-\frac{\partial^2 z}{\partial v^2}\bigr)+

+(2zu222zuv+2zv2)=12u+v2uv2+\bigl(\frac{\partial^2 z}{\partial u^2}-2\frac{\partial^2 z}{\partial u\partial v}+\frac{\partial^2 z}{\partial v^2}\bigr)=12\frac{u+v}{2}\frac{u-v}{2} . That is 2zv2=34u234v2\frac{\partial^2 z}{\partial v^2}=\frac{3}{4}u^2-\frac{3}{4}v^2

Integrate it with respect to vv : zv=34u2v14v3+R(u)\frac{\partial z}{\partial v}=\frac{3}{4}u^2v-\frac{1}{4}v^3+R(u) and again z=38u2v2116v4+R(u)v+S(u)z=\frac{3}{8}u^2v^2-\frac{1}{16}v^4+R(u)v+S(u),

where R(u),S(u)R(u), S(u) are arbitrary twice differentiable functions.

Return to the variables xx and yy : z=38(x+y)2(xy)2116(xy)4+(xy)R(x+y)+z=\frac{3}{8}(x+y)^2(x-y)^2-\frac{1}{16}(x-y)^4+(x-y)\cdot R(x+y)+

+S(x+y)+S(x+y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS