Consider a quadratic form x2−2xy+y2 (for a differential equation A11∂x2∂2z+A12∂x∂y∂2z+A22∂y2∂2z+…=0 we consider a quadratic form A11x2+A12xy+A22y2 ). Its matrix is (1−1−11) with eigenvectors (1,1) and (1,−1) .
So we have change of the variables: u=1⋅x+1⋅y=x+y and v=1⋅x+(−1)⋅y=x−y .
Then ∂x∂f=∂u∂f∂x∂u+∂v∂f∂x∂v=∂u∂f+∂v∂f and ∂y∂f=∂u∂f∂y∂u+∂v∂f∂y∂v=∂u∂f−∂v∂f . Move from the variables x,y to the variables u,v .
In case f=z we have ∂x∂z=∂u∂z+∂v∂z and ∂y∂z=∂u∂z−∂v∂z .
In case f=∂x∂z we have ∂x2∂2z=∂x∂(∂x∂z)=∂u∂(∂x∂z)+∂v∂(∂x∂z)=∂u2∂2z+2∂u∂v∂2z+∂v2∂2z and ∂x∂y∂2z=∂y∂(∂x∂z)=∂u∂(∂x∂z)−∂v∂(∂x∂z)=∂u2∂2z−∂v2∂2z
In case f=∂y∂z we have ∂y2∂2z=∂y∂(∂y∂z)=∂u∂(∂y∂z)−∂v∂(∂y∂z)=∂u2∂2z−2∂u∂v∂2z+∂v2∂2z .
In addition x=2u+v and y=2u−v .
Rewrite the original equation: (∂u2∂2z+2∂u∂v∂2z+∂v2∂2z)−2(∂u2∂2z−∂v2∂2z)+
+(∂u2∂2z−2∂u∂v∂2z+∂v2∂2z)=122u+v2u−v . That is ∂v2∂2z=43u2−43v2
Integrate it with respect to v : ∂v∂z=43u2v−41v3+R(u) and again z=83u2v2−161v4+R(u)v+S(u),
where R(u),S(u) are arbitrary twice differentiable functions.
Return to the variables x and y : z=83(x+y)2(x−y)2−161(x−y)4+(x−y)⋅R(x+y)+
+S(x+y)
Comments