∂ 2 u ∂ x 2 = 8 x y 2 + 1. \frac{\partial^2u}{\partial x^2}= 8xy^2+1. ∂ x 2 ∂ 2 u = 8 x y 2 + 1.
Integrate each side of the equation by x . Antiderivatives will differ by an arbitrary function C 1 (y) :
∂ u ∂ x = 4 x 2 y 2 + x + C 1 ( y ) . \frac{\partial u}{\partial x}= 4x^2y^2+x+C_1(y). ∂ x ∂ u = 4 x 2 y 2 + x + C 1 ( y ) . Repeat this:
u = 4 3 x 3 y 2 + x 2 2 + C 1 ( y ) x + C 2 ( y ) . u = \frac{4}{3}x^3y^2+\frac{x^2}{2}+C_1(y)x +C_2(y). u = 3 4 x 3 y 2 + 2 x 2 + C 1 ( y ) x + C 2 ( y ) . C 2 (y) is an arbitrary function.
∂ 2 u ∂ x ∂ y − ∂ u ∂ x = 6 x e x . \frac{\partial ^2u}{\partial x \partial y} -\frac{\partial u}{\partial x}=6xe^x. ∂ x ∂ y ∂ 2 u − ∂ x ∂ u = 6 x e x .
Integrate each side of the equation by x . Antiderivatives will differ by an arbitrary function C 1 (y) :
∂ u ∂ y − u = 6 ( x − 1 ) e x + C 1 ( y ) . \frac{\partial u}{\partial y} - u = 6(x-1)e^x+C_1(y). ∂ y ∂ u − u = 6 ( x − 1 ) e x + C 1 ( y ) . This is linear ordinary differential linear equation by y . Then by the well-known formula
[https://en.wikipedia.org/wiki/Linear_differential_equation#First-order_equation_with_variable_coefficients]
u = e y ( ∫ y 0 y ( 6 ( x − 1 ) e x + C 1 ( t ) ) e − t d t + C 2 ( x ) ) , u = e^y\left(\int\limits_{y_0}^{y}{\Bigl(6(x-1)e^x + C_1(t)\Bigr)e^{-t}dt} + C_2(x) \right), u = e y ⎝ ⎛ y 0 ∫ y ( 6 ( x − 1 ) e x + C 1 ( t ) ) e − t d t + C 2 ( x ) ⎠ ⎞ , where y 0 is any preselected number (let y 0 =0 for example), C 2 (x) is an arbitrary function of x.
Then
u = ( 6 ( x − 1 ) e x ∫ y 0 y e − t d t + ∫ y 0 y C 1 ( t ) e − t d t + C 2 ( x ) ) e y . u = \left(6(x-1)e^x\int\limits_{y_0}^{y}{e^{-t}dt} + \int\limits_{y_0}^{y}{C_1(t)e^{-t}dt} + C_2(x)\right) e^y. u = ⎝ ⎛ 6 ( x − 1 ) e x y 0 ∫ y e − t d t + y 0 ∫ y C 1 ( t ) e − t d t + C 2 ( x ) ⎠ ⎞ e y .
Now let the integrals not depend on x: this could be taken into account in arbitrary C 2 (x). Then consider a new arbitrary function C 3 (y) based on arbitrary function C 1 (y):
C 3 ( y ) = e y ∫ y 0 y C 1 ( t ) e − t d t , C_3(y) =
e^y\int\limits_{y_0}^{y}{C_1(t)e^{-t}dt}, C 3 ( y ) = e y y 0 ∫ y C 1 ( t ) e − t d t ,
and a new arbitrary function C 4 (x) based on arbitrary function C 2 (x):
∫ 0 y e − t d t = − e − y + 1 , \int\limits_{0}^{y}{e^{-t}dt} = -e^{-y} + 1, 0 ∫ y e − t d t = − e − y + 1 , C 4 ( x ) = 6 ( x − 1 ) e x + C 2 ( x ) . C_4(x) = 6(x-1)e^x + C_2(x). C 4 ( x ) = 6 ( x − 1 ) e x + C 2 ( x ) .
Then the expression is simplified:
u = C 4 ( x ) e y + C 3 ( y ) − 6 ( x − 1 ) e x . u = C_4(x)e^y + C_3(y) - 6(x-1)e^x. u = C 4 ( x ) e y + C 3 ( y ) − 6 ( x − 1 ) e x .
Comments