Consider the equation
y ′ ′ ′ + 3 y ′ ′ + 2 y ′ − 5 y = 0 y'''+3y''+2y'-5y=0 y ′′′ + 3 y ′′ + 2 y ′ − 5 y = 0 We write the characteristic equation
k 3 + 3 × k 2 + 2 × k − 5 = 0 k^3+3\times k^2+2\times k -5=0 k 3 + 3 × k 2 + 2 × k − 5 = 0 Using the Cardano formulas we get the roots of the equation
k 1 = 0.9 k_1=0.9 k 1 = 0.9
k 2 = − 1.95 − 1.31 × i k_2=-1.95-1.31\times i k 2 = − 1.95 − 1.31 × i
k 3 = − 1.95 + 1.31 × i k_3= -1.95 +1.31\times i k 3 = − 1.95 + 1.31 × i where
i = − 1 . i=\sqrt {-1}. i = − 1 .
Therefore solving the equation
y ′ ′ ′ + 3 y ′ ′ + 2 y ′ − 5 y = 0 y'''+3y''+2y'-5y=0 y ′′′ + 3 y ′′ + 2 y ′ − 5 y = 0
y = C 1 × e 0.9 t + C 2 × e − 1.95 t s i n ( 1.31 t ) + C 3 × e − 1.95 t c o s ( 1.31 t ) y=C_1\times e^ {0.9t} + C_2\times e^ {-1.95t}sin (1.31t)+C_3\times e^ {-1.95t}cos (1.31t) y = C 1 × e 0.9 t + C 2 × e − 1.95 t s in ( 1.31 t ) + C 3 × e − 1.95 t cos ( 1.31 t ) where
C 1 , C 2 , C 3 C_1, C_2, C_3 C 1 , C 2 , C 3 are constants. Assume a partial solution of the equation is
y p = A s i n ( 2 t ) + B c o s ( 2 t ) y_p=Asin(2t)+Bcos(2t) y p = A s in ( 2 t ) + B cos ( 2 t ) where A, B are constants. Hence
y p ′ = 2 A c o s ( 2 t ) − 2 B s i n ( 2 t ) y'_p=2Acos(2t)-2Bsin(2t) y p ′ = 2 A cos ( 2 t ) − 2 B s in ( 2 t )
y p ′ ′ = − 4 A s i n ( 2 t ) − 4 B c o s ( 2 t ) y''_p=-4Asin(2t)-4Bcos(2t) y p ′′ = − 4 A s in ( 2 t ) − 4 B cos ( 2 t )
y p ′ ′ ′ = − 8 A c o s ( 2 t ) + 8 B s i n ( 2 t ) y'''_p=-8Acos(2t)+8Bsin(2t) y p ′′′ = − 8 A cos ( 2 t ) + 8 B s in ( 2 t ) Substituting in the equation we get
( − 3 A + 6 B ) s i n ( 2 t ) + ( − 6 A − 3 B ) c o s ( 2 t ) = s i n ( 2 t ) . (-3A+6B)sin(2t)+(-6A-3B)cos(2t)=sin(2t). ( − 3 A + 6 B ) s in ( 2 t ) + ( − 6 A − 3 B ) cos ( 2 t ) = s in ( 2 t ) . As result one gets
A = − 1 15 A=- \frac {1} {15} A = − 15 1
B = 2 15 B= \frac{2} {15} B = 15 2 Therefore the solution of the equation
y ′ ′ ′ + 3 y ′ ′ + 2 y ′ − 5 y = s i n ( 2 t ) y'''+3y''+2y'-5y=sin(2t) y ′′′ + 3 y ′′ + 2 y ′ − 5 y = s in ( 2 t ) is
y = C 1 × e 0.9 t + C 2 × e − 1.95 t s i n ( 1.31 t ) + C 3 × e − 1.95 t c o s ( 1.31 t ) + y=C_1\times e^ {0.9t} + C_2\times e^ {-1.95t}sin (1.31t)+C_3\times e^ {-1.95t}cos (1.31t)+ y = C 1 × e 0.9 t + C 2 × e − 1.95 t s in ( 1.31 t ) + C 3 × e − 1.95 t cos ( 1.31 t ) +
− 1 15 s i n ( 2 t ) + 2 15 c o s ( t ) - \frac {1} {15} sin(2t) + \frac {2} {15} cos(t) − 15 1 s in ( 2 t ) + 15 2 cos ( t )
where
C 1 , C 2 , C 3 C_1, C_2, C_3 C 1 , C 2 , C 3 are constants.
Answer.
y = C 1 × e 0.9 t + C 2 × e − 1.95 t s i n ( 1.31 t ) + C 3 × e − 1.95 t c o s ( 1.31 t ) − 1 15 s i n ( 2 t ) + 2 15 c o s ( t ) y=C_1\times e^ {0.9t} + C_2\times e^ {-1.95t}sin (1.31t)+C_3\times e^ {-1.95t}cos (1.31t)- \frac {1} {15} sin(2t) + \frac {2} {15} cos(t) y = C 1 × e 0.9 t + C 2 × e − 1.95 t s in ( 1.31 t ) + C 3 × e − 1.95 t cos ( 1.31 t ) − 15 1 s in ( 2 t ) + 15 2 cos ( t ) where
C 1 , C 2 , C 3 C_1, C_2, C_3 C 1 , C 2 , C 3 are constant.
Comments