Question #90389
Solve the below differential equation
y'''+3y''+2y'-5y=sin2t
1
Expert's answer
2019-05-31T10:19:08-0400

Consider the equation


y+3y+2y5y=0y'''+3y''+2y'-5y=0

We write the characteristic equation


k3+3×k2+2×k5=0k^3+3\times k^2+2\times k -5=0

Using the Cardano formulas we get the roots of the equation


k1=0.9k_1=0.9

k2=1.951.31×ik_2=-1.95-1.31\times i

k3=1.95+1.31×ik_3= -1.95 +1.31\times i

where


i=1.i=\sqrt {-1}.

Therefore solving the equation


y+3y+2y5y=0y'''+3y''+2y'-5y=0

y=C1×e0.9t+C2×e1.95tsin(1.31t)+C3×e1.95tcos(1.31t)y=C_1\times e^ {0.9t} + C_2\times e^ {-1.95t}sin (1.31t)+C_3\times e^ {-1.95t}cos (1.31t)

where


C1,C2,C3C_1, C_2, C_3

are constants. Assume a partial solution of the equation is


yp=Asin(2t)+Bcos(2t)y_p=Asin(2t)+Bcos(2t)

where A, B are constants. Hence


yp=2Acos(2t)2Bsin(2t)y'_p=2Acos(2t)-2Bsin(2t)


yp=4Asin(2t)4Bcos(2t)y''_p=-4Asin(2t)-4Bcos(2t)

yp=8Acos(2t)+8Bsin(2t)y'''_p=-8Acos(2t)+8Bsin(2t)

Substituting in the equation we get


(3A+6B)sin(2t)+(6A3B)cos(2t)=sin(2t).(-3A+6B)sin(2t)+(-6A-3B)cos(2t)=sin(2t).

As result one gets


A=115A=- \frac {1} {15}

B=215B= \frac{2} {15}

Therefore the solution of the equation


y+3y+2y5y=sin(2t)y'''+3y''+2y'-5y=sin(2t)

is

y=C1×e0.9t+C2×e1.95tsin(1.31t)+C3×e1.95tcos(1.31t)+y=C_1\times e^ {0.9t} + C_2\times e^ {-1.95t}sin (1.31t)+C_3\times e^ {-1.95t}cos (1.31t)+

115sin(2t)+215cos(t)- \frac {1} {15} sin(2t) + \frac {2} {15} cos(t)

where


C1,C2,C3C_1, C_2, C_3

are constants.

Answer.

y=C1×e0.9t+C2×e1.95tsin(1.31t)+C3×e1.95tcos(1.31t)115sin(2t)+215cos(t)y=C_1\times e^ {0.9t} + C_2\times e^ {-1.95t}sin (1.31t)+C_3\times e^ {-1.95t}cos (1.31t)- \frac {1} {15} sin(2t) + \frac {2} {15} cos(t)

where

C1,C2,C3C_1, C_2, C_3

are constant.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS