Question #89314
solving this ODE by power series x^2y''+(4x-x^2)y'+(2-x)y=0
1
Expert's answer
2019-05-07T17:33:11-0400
y(x)=n=0anxny(x)=\sum_{n=0}^\infin a_nx^n

y(x)=n=1nanxn1y'(x)=\sum_{n=1}^\infin na_nx^{n-1}y(x)=n=2n(n1)anxn2y''(x)=\sum_{n=2}^\infin n(n-1)a_nx^{n-2}

x2n=2n(n1)anxn2+(4xx2)n=1nanxn1+(2x)n=0anxn=0x^2\sum_{n=2}^\infin n(n-1)a_nx^{n-2}+(4x-x^2)\sum_{n=1}^\infin na_nx^{n-1}+(2-x)\sum_{n=0}^\infin a_nx^n=0

n=2n(n1)anxn+n=14nanxnn=1nanxn+1+n=02anxnn=0anxn+1=0\sum_{n=2}^\infin n(n-1)a_nx^{n}+\sum_{n=1}^\infin 4na_nx^{n}-\sum_{n=1}^\infin na_nx^{n+1}+\sum_{n=0}^\infin 2a_nx^n-\sum_{n=0}^\infin a_nx^{n+1}=0

n=2n(n1)anxn+n=14nanxnn=2(n1)an1xn+n=02anxnn=1an1xn=0\sum_{n=2}^\infin n(n-1)a_nx^{n}+\sum_{n=1}^\infin 4na_nx^{n}-\sum_{n=2}^\infin (n-1)a_{n-1}x^{n}+\sum_{n=0}^\infin 2a_nx^n-\sum_{n=1}^\infin a_{n-1}x^{n}=0

2a0+n=1[n(n1)an+4nan(n1)an1+2anan1]xn=02a_0+\sum_{n=1}^\infin [n(n-1)a_n+4na_n- (n-1)a_{n-1}+ 2a_n- a_{n-1}]x^{n}=0

n=0;a0=0n=0 ; a_0=0

an=nan1/[n(n1)+4n+2]a_n=na_{n-1}/[n(n-1)+4n+2]

y(x)=0y(x)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS