Question #89312
solving xy''+2y'+xy=0 by power series
1
Expert's answer
2019-05-08T15:17:11-0400
y(x)=n=0anxny(x)=\sum_{n=0}^\infin a_nx^n

y(x)=n=1nanxn1y'(x)=\sum_{n=1}^\infin na_nx^{n-1}

y(x)=n=2n(n1)anxn2y''(x)=\sum_{n=2}^\infin n(n-1)a_nx^{n-2}

xn=2n(n1)anxn2+2n=1nanxn1+xn=0anxn=0x\sum_{n=2}^\infin n(n-1)a_nx^{n-2}+2\sum_{n=1}^\infin na_nx^{n-1}+x\sum_{n=0}^\infin a_nx^n=0

n=2n(n1)anxn1+2n=1nanxn1+n=0anxn+1=0\sum_{n=2}^\infin n(n-1)a_nx^{n-1}+2\sum_{n=1}^\infin na_nx^{n-1}+\sum_{n=0}^\infin a_nx^{n+1}=0

n=2n(n1)anxn1+2n=1nanxn1+n=2an2xn1=0\sum_{n=2}^\infin n(n-1)a_nx^{n-1}+2\sum_{n=1}^\infin na_nx^{n-1}+\sum_{n=2}^\infin a_{n-2}x^{n-1}=0

2a1+n=2[n(n1)an+2nan+an2]xn1=02a_1+\sum_{n=2}^\infin [n(n-1)a_n+2na_n+a_{n-2}]x^{n-1}=0

a1=0a_1=0

For

n2n\ge2

n(n1)an+2nan+an2=0n(n-1)a_n+2na_n+a_{n-2}=0

an=an2/[(n(n1)+2n]=an2/[n(n1)]a_n=-a_{n-2}/[(n(n-1)+2n]=-a_{n-2}/[n(n-1)]

So


a2=a0/6=a0/(23)a_2=-a_0/6=-a_0/(2*3)

a3=a5=a7=a9=...=0a_3=a_5=a_7=a_9=...=0

a4=a2/20=a0/120=a0/(2345)a_4=-a_2/20=a_0/120=a_0/(2*3*4*5)

a6=a4/42=a0/(234567)a_6=-a_4/42=-a_0/(2*3*4*5*6*7)

y(x)=a0(1x2/(23)+x4/(2345)x6/(234567)+(1)kx2k/(2k+1)!)y(x)=a_0(1-x^2/(2*3)+x^4/(2*3*4*5)-x^6/(2*3*4*5*6*7)+(-1)^kx^{2k}/(2k+1)!)

y(x)=a0k=0(1)kx2k/(2k+1)!y(x)=a_0 \sum_{k=0}^ \infin(-1)^kx^{2k}/(2k+1)!


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS