solving xy''+2y'+xy=0 by power series
1
2019-05-08T15:17:11-0400
y(x)=n=0∑∞anxn
y′(x)=n=1∑∞nanxn−1
y′′(x)=n=2∑∞n(n−1)anxn−2
xn=2∑∞n(n−1)anxn−2+2n=1∑∞nanxn−1+xn=0∑∞anxn=0
n=2∑∞n(n−1)anxn−1+2n=1∑∞nanxn−1+n=0∑∞anxn+1=0
n=2∑∞n(n−1)anxn−1+2n=1∑∞nanxn−1+n=2∑∞an−2xn−1=0
2a1+n=2∑∞[n(n−1)an+2nan+an−2]xn−1=0
a1=0 For
n≥2
n(n−1)an+2nan+an−2=0
an=−an−2/[(n(n−1)+2n]=−an−2/[n(n−1)] So
a2=−a0/6=−a0/(2∗3)
a3=a5=a7=a9=...=0
a4=−a2/20=a0/120=a0/(2∗3∗4∗5)
a6=−a4/42=−a0/(2∗3∗4∗5∗6∗7)
y(x)=a0(1−x2/(2∗3)+x4/(2∗3∗4∗5)−x6/(2∗3∗4∗5∗6∗7)+(−1)kx2k/(2k+1)!)
y(x)=a0k=0∑∞(−1)kx2k/(2k+1)!
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments