Separate variables. Let
"U(x, t)=X(x)T(t)"Then
Substitute
Dividing this equation by "XT", we have
for some constant "\\lambda". Therefore, if there exists a solution "U(x, t)=X(x)T(t)" of the heat equation, then "X(x)" and "T(t)" must satisfy the equations
"\\frac{T'}{T}=-\\lambda""\\frac{X''}{X}=-\\lambda"
Solve the eigenvalue problem
We have to find nontrivial solutions X of the eigenvalue problem. If λ=0, then "X(x)=\\alpha x+\\beta" and "0=X(0)=0+\\beta" implies that "\\beta=0" and "0=X(1)=\\alpha" implies that "\\alpha=0". If "\\lambda<0" then "0=X(0)=\\alpha\\cosh(0)+\\beta\\sinh(0)=\\alpha" and "0=X(1)=0+\\beta\\sinh(1)=\\beta\\sinh(1)" shows that also "\\beta=0". We conclude that "\\lambda\\leq0" is not an eigenvalue of the problem. Finally, consider "\\lambda>0." Then "0=X(0)=\\alpha\\cos(\\sqrt{\\lambda}\\cdot0)+0=\\alpha" and "0=X(1)=\\beta\\sin(\\sqrt{\\lambda}\\cdot1)."
Since "X" is nontrivial solution, "\\beta=\\not0" and hence "\\sin(\\sqrt{\\lambda}\\cdot1)=0." Consequently,
and the corresponding eigenfunction is given by
After substituting "\\lambda=(\\dfrac{n\\pi }{1})^2" , we get the family of solutions
Thus we have obtained the following sequence of solutions
We obtain more solutions by taking linear combinations of the "U_n" ’s ( recall the superposition principle)
and then by passing to the limit "N\\to \\infin,"
Finally, we consider the initial condition. At "t=0", we must have
"B_n={2 \\over 1}\\displaystyle\\int_{0}^1x(1-x)\\sin(\\frac{n\\pi x}{1})dx"
"\\int xsin(n\\pi x)dx=-{1 \\over \\pi n}xcos(n\\pi x)+{1 \\over \\pi n}\\int cos(n\\pi x)dx="
"=-{1 \\over \\pi n}xcos(n\\pi x)+{1 \\over \\pi^2 n^2}sin(n\\pi x)+C_1"
"-\\int x^2sin(n\\pi x)dx={1 \\over \\pi n}x^2cos(n\\pi x)-2{1 \\over \\pi n}\\int xcos(n\\pi x)dx"
"-2{1 \\over \\pi n}\\int xcos(n\\pi x)dx=-2{1 \\over \\pi^2 n^2}xsin(n\\pi x)+2{1 \\over \\pi^2 n^2}\\int sin(n\\pi x)dx="
"=-2{1 \\over \\pi^2 n^2}xsin(n\\pi x)-2{1 \\over \\pi^3 n^3}cos(n\\pi x)+C_2"
"B_n=2[-{1 \\over \\pi n}xcos(n\\pi x)+{1 \\over \\pi^2 n^2}sin(n\\pi x)]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}+"
"+2[{1 \\over \\pi n}x^2cos(n\\pi x)-{2 \\over \\pi^2 n^2}xsin(n\\pi x)-{2 \\over \\pi^3 n^3}cos(n\\pi x)]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}="
"=-{2 \\over \\pi n}cos(n\\pi )+{2 \\over \\pi n}cos(n\\pi )-{4 \\over \\pi^3 n^3}cos(n\\pi )+{4 \\over \\pi^3 n^3}="
We arrive at the solution
Comments
Leave a comment