Question #351040

2.1. Solve 2xy + 6x + (x^2 - 4)y'=0


1
Expert's answer
2022-06-27T06:38:19-0400
(x24)y+2xy=6x(x^2 - 4)y'+2xy=-6x

y=uvy=uv+uvy=uv\\ y'=u'v+uv'

(x24)(uv+uv)+2xuv=6x(x^2-4)(u'v+uv')+2xuv=-6x

u((x24)v+2xv)+(x24)vu=6xu((x^2-4)v'+2xv)+(x^2-4)vu'=-6x

Let

(x24)v+2xv=0(x^2-4)v'+2xv=0

Then

dvv=2xx24dx\frac{dv}{v}=-\frac{2x}{x^2-4}dx

lnv=ln(x24)\ln v=-\ln (x^2-4)

v=1x24v=\frac{1}{x^2-4}

We get an equation

(x24)1x24u=6x(x^2-4)\frac{1}{x^2-4}u'=-6x

u=6xu'=-6x

u=3x2+Cu=-3x^2+C

Finally

y=uv=3x2+Cx24y=uv=\frac{-3x^2+C}{x^2-4}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS