1/x+ye^xy+2x)dx +(1/y+xe^xy+2y)dy=0
"\\left(\\frac{1}{x}+ye^{xy}+2x\\right)dx+\\left(\\frac{1}{y}+x{e}^{xy}+2y\\right)dy=0" ,
"P\\left(x,y\\right)=\\frac{1}{x}+y^{xy}+2x, Q\\left(x,y\\right)=\\frac{1}{y}+x{e}^{xy}+2y" ,
"\\frac{\\partial P\\left(x,y\\right)}{\\partial y}=e^{xy}+yxe^{xy}" , "\\frac{\\partial Q\\left(x,y\\right)}{\\partial x}=e^{xy}+xye^{xy}" ,
"\\frac{\\partial P\\left(x,y\\right)}{\\partial y}=\\frac{\\partial Q\\left(x,y\\right)}{\\partial x}" - total differential equation
"dU=\\frac{\\partial U}{\\partial x}dx+\\frac{\\partial U}{\\partial y}dy=P\\left(x,y\\right)dx+Q\\left(x,y\\right)dy",
"\\int\\left(\\frac{1}{x}+ye^{xy}+2x\\right)dx=\\ln{x}+y\\frac{1}{y}e^{xy}+x^2+\\varphi\\left(y\\right)=\\ln{x}+e^{xy}+x^2+\\varphi\\left(y\\right)" ,
"\\frac{\\partial U}{\\partial y}=xe^{xy}+\\varphi\\prime\\left(y\\right)=\\frac{1}{y}+xe^{xy}+2y" ,
"\\varphi\\prime\\left(y\\right)=\\frac{1}{y}+2y" ,
"\\varphi\\left(y\\right)=\\int\\left(\\frac{1}{y}+2y\\right)dy=\\ln{y}+y^2" ,
Answer: "U\\left(x,y\\right)=\\ln{x}+e^{xy}+x^2+\\ln{y}+y^2=C"
Comments
Leave a comment