(x1+yexy+2x)dx+(y1+xexy+2y)dy=0 ,
P(x,y)=x1+yxy+2x,Q(x,y)=y1+xexy+2y ,
∂y∂P(x,y)=exy+yxexy , ∂x∂Q(x,y)=exy+xyexy ,
∂y∂P(x,y)=∂x∂Q(x,y) - total differential equation
dU=∂x∂Udx+∂y∂Udy=P(x,y)dx+Q(x,y)dy,
∫(x1+yexy+2x)dx=lnx+yy1exy+x2+φ(y)=lnx+exy+x2+φ(y) ,
∂y∂U=xexy+φ′(y)=y1+xexy+2y ,
φ′(y)=y1+2y ,
φ(y)=∫(y1+2y)dy=lny+y2 ,
Answer: U(x,y)=lnx+exy+x2+lny+y2=C
Comments