Question #340399

1/x+ye^xy+2x)dx +(1/y+xe^xy+2y)dy=0

1
Expert's answer
2022-05-16T12:22:47-0400

(1x+yexy+2x)dx+(1y+xexy+2y)dy=0\left(\frac{1}{x}+ye^{xy}+2x\right)dx+\left(\frac{1}{y}+x{e}^{xy}+2y\right)dy=0 ,

P(x,y)=1x+yxy+2x,Q(x,y)=1y+xexy+2yP\left(x,y\right)=\frac{1}{x}+y^{xy}+2x, Q\left(x,y\right)=\frac{1}{y}+x{e}^{xy}+2y ,

P(x,y)y=exy+yxexy\frac{\partial P\left(x,y\right)}{\partial y}=e^{xy}+yxe^{xy} , Q(x,y)x=exy+xyexy\frac{\partial Q\left(x,y\right)}{\partial x}=e^{xy}+xye^{xy} ,

P(x,y)y=Q(x,y)x\frac{\partial P\left(x,y\right)}{\partial y}=\frac{\partial Q\left(x,y\right)}{\partial x} - total differential equation

dU=Uxdx+Uydy=P(x,y)dx+Q(x,y)dydU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy=P\left(x,y\right)dx+Q\left(x,y\right)dy,

(1x+yexy+2x)dx=lnx+y1yexy+x2+φ(y)=lnx+exy+x2+φ(y)\int\left(\frac{1}{x}+ye^{xy}+2x\right)dx=\ln{x}+y\frac{1}{y}e^{xy}+x^2+\varphi\left(y\right)=\ln{x}+e^{xy}+x^2+\varphi\left(y\right) ,

Uy=xexy+φ(y)=1y+xexy+2y\frac{\partial U}{\partial y}=xe^{xy}+\varphi\prime\left(y\right)=\frac{1}{y}+xe^{xy}+2y ,

φ(y)=1y+2y\varphi\prime\left(y\right)=\frac{1}{y}+2y ,

φ(y)=(1y+2y)dy=lny+y2\varphi\left(y\right)=\int\left(\frac{1}{y}+2y\right)dy=\ln{y}+y^2 ,

Answer: U(x,y)=lnx+exy+x2+lny+y2=CU\left(x,y\right)=\ln{x}+e^{xy}+x^2+\ln{y}+y^2=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS