(dy)/(dx) = - x/(2y)
Question
dydx=−x2y\frac {dy} {dx}=-\frac {x} {2y}dxdy=−2yx
Solution.
We have:
2y dy=−x dx2y\,dy=-x\,dx2ydy=−xdx
∫2y dy=∫−x dx\int {2y} \ dy=\int {-x}\ dx∫2y dy=∫−x dx
2y22=−x22+C2\frac {y^2} {2}=-\frac {x^2} {2} + C22y2=−2x2+C
y2=−x22+Cy^2=-\frac {x^2} {2} + Cy2=−2x2+C
y=±−x22+Cy=\pm \sqrt{-\frac {x^2} {2} + C}y=±−2x2+C
y2=−x22+Cy^2=-\frac {x^2} {2} + Cy2=−2x2+C is the general integral in an implicit form.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments