y′+y/2=(xy3)/2−y3/2
Bernuli equalation
y′+a(x)y=b(x)yn
a(x)=1/2
b(x)=(x-1)/2
n=3
y′/y3+1/(2y2)=x/2−1/2
Deleting, we miss solution y=0
u=1/y2
u′=−2y′/y3
y=1/u
y′=−u′y3/2
u/2−u′/2=x/2−1/2
u-u'=x-1
-u'=x-u-1
v=x-u-1
v'=1-u'
u=x-v-1
u'=1-v'
v'-1=v
v'=v+1=dv/dx
dv=(v+1)dx
dv/(v+1)=dx
Deleting, we miss solution v+1=0, x=1/y2
∫dv/(v+1)=∫dx
ln (v+1)=x+C
v+1=ex+C
x-u=Cex
x-1/y2=Cex
y=x−Cex1
Comments