Solve the following differential equation: 2dy/dx + y = y^3(x - 1)
y′+y/2=(xy3)/2−y3/2y'+y/2=(xy^3)/2-y^3/2y′+y/2=(xy3)/2−y3/2
Bernuli equalation
y′+a(x)y=b(x)yny'+a(x)y=b(x)y^ny′+a(x)y=b(x)yn
a(x)=1/2
b(x)=(x-1)/2
n=3
y′/y3+1/(2y2)=x/2−1/2y'/y^3+1/(2y^2)=x/2-1/2y′/y3+1/(2y2)=x/2−1/2
Deleting, we miss solution y=0
u=1/y2u=1/y^2u=1/y2
u′=−2y′/y3u'=-2y'/y^3u′=−2y′/y3
y=1/uy=1/\sqrt uy=1/u
y′=−u′y3/2y'=-u'y^3/2y′=−u′y3/2
u/2−u′/2=x/2−1/2u/2-u'/2=x/2-1/2u/2−u′/2=x/2−1/2
u-u'=x-1
-u'=x-u-1
v=x-u-1
v'=1-u'
u=x-v-1
u'=1-v'
v'-1=v
v'=v+1=dv/dx
dv=(v+1)dx
dv/(v+1)=dx
Deleting, we miss solution v+1=0, x=1/y2
∫dv/(v+1)=∫dx\int dv/(v+1)=\int dx∫dv/(v+1)=∫dx
ln (v+1)=x+C
v+1=ex+C
x-u=Cex
x-1/y2=Cex
y=1x−Cexy=\sqrt {\frac{1}{x-Ce^x}}y=x−Cex1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments