integrating factor by inspection (2x^2 + y)dx + (x^2y - x)dy = 0
integrating factor by inspection:
"\\left(2x^2+y\\right)dx+\\left(x^2y-x\\right)dy=0"
Solution:
"\\left(2x^2dx+x^2ydy\\right)+\\left(ydx-xdy\\right)=0",
"\\frac{x^2\\left(2dx+ydy\\right)}{x^2}-\\frac{\\left(xdy-ydx\\right)}{x^2}=0" ,
"\\left(2dx+ydy\\right)-\\frac{\\left(xdy-ydx\\right)}{x^2}=0" ,
"d\\left(2x+\\frac{y^2}{2}\\right)-d\\left(\\frac{y}{x}\\right)=0" ,
"d\\left(2x+\\frac{y^2}{2}-\\frac{y}{x}\\right)=0" ,
"2x+\\frac{y^2}{2}-\\frac{y}{x}=C" ,
Answer: "U\\left(x,y\\right)=2x+\\frac{y^2}{2}-\\frac{y}{x}=C" , integrating factor is "\\mu\\left(x\\right)=\\frac{1}{x^2}"
Comments
Leave a comment