Answer to Question #331388 in Differential Equations for Prem

Question #331388

Solve the following using the method of undetermined coefficients. (d ^ 2 * y)/(d * t ^ 2) + (dy)/(dt) - 5y = - 6x ^ 3 + 3x ^ 2 + 6x


1
Expert's answer
2022-04-21T13:59:38-0400

y+y5y=6x3+3x2+6xy''+y'-5y=-6x^3+3x^2+6x (1)

The solutions to a nonhomogeneous equation are of the form

y(x)=yh(x)+yp(x)y(x)= y_h(x) + y_p(x) ,

where yhy_h is the general solution to the associated homogeneous equation and ypy_p is a particular solution.

The associated homogeneous equation:

y+y5y=0y''+y'-5y=0

The general solution of this equation is determined by the roots of the characteristic equation:

λ2+λ5=0\lambda^2+\lambda-5=0

D=1241(5)=21D=1^2-4\cdot1\cdot(-5)=21

λ=1±212\lambda=\frac{-1\pm\sqrt{21}}{2}

yh(x)=Ae1+212x+Be1212xy_h(x)=Ae^{\frac{-1+\sqrt{21}}{2}x}+Be^{\frac{-1-\sqrt{21}}{2}x} , where AA and BB are constants.

The particular solution of the differential equation:

yp(x)=Cx3+Dx2+Ex+Fy_p(x)=Cx^3+Dx^2+Ex+F

yp(x)=3Cx2+2Dx+Ey_p'(x)=3Cx^2+2Dx+E

yp(x)=6Cx+2Dy_p''(x)=6Cx+2D

Substitution ypy_p , ypy_p' , and ypy_p'' into (1) gives:

6Cx+2D+3Cx2+2Dx+E6Cx+2D+3Cx^2+2Dx+E-5(Cx3+Dx2+Ex+F)=6x3+3x2+6x5(Cx^3+Dx^2+Ex+F)=-6x^3+3x^2+6x

The last equation must be valid for all values of x, so the coefficients with the like powers of x

 in the right and left sides must be identical:

{5C=63C5D=36C+2D5E=62D+E5F=0\begin{cases} -5C=-6\\ 3C-5D=3\\ 6C+2D-5E=6\\ 2D+E-5F=0 \end{cases}

We find from this system that 

 C=65C=\frac65 ; D=325D=\frac{3}{25} ; E=36125E=\frac{36}{125} ; F=66625F=\frac{66}{625}

 As a result, the particular solution is written as

yp(x)=65x3+325x2+36125x+66625y_p(x)=\frac65x^3+\frac{3}{25}x^2+\frac{36}{125}x+\frac{66}{625}

Answer: y(x)=Ae1+212x+Be1212x+65x3+y(x)=Ae^{\frac{-1+\sqrt{21}}{2}x}+Be^{\frac{-1-\sqrt{21}}{2}x}+\frac65x^3+325x2+36125x+66625\frac{3}{25}x^2+\frac{36}{125}x+\frac{66}{625}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment