solve system of linear differential equations dx/dt-4y=1 and dy/dt+x=2
From second equation:
"x = 2 - \\frac{{dy}}{{dt}} \\Rightarrow \\frac{{dx}}{{dt}} = - \\frac{{{d^2}y}}{{d{t^2}}}"
Substitute into the first equation:
"- \\frac{{{d^2}y}}{{d{t^2}}} - 4y = 1 \\Rightarrow \\frac{{{d^2}y}}{{d{t^2}}} + 4y = - 1"
We solve the resulting differential equation.
Characteristic equation:
"{k^2} + 4 = 0 \\Rightarrow {k^2} = - 4 \\Rightarrow k = \\pm 2i"
Then the general solution of the homogeneous equation has the form:
"{y_0} = {C_1}\\cos 2t + {C_2}\\sin 2t"
A particular solution will be sought in the form:
"Y = A \\Rightarrow \\frac{{dY}}{{dt}} = \\frac{{{d^2}Y}}{{d{t^2}}} = 0"
Substitute into the equation:
"4A = - 1 \\Rightarrow A = Y = - \\frac{1}{4}"
Then
"y = {y_0} + Y = {C_1}\\cos 2t + {C_2}\\sin 2t - \\frac{1}{4} \\Rightarrow \\frac{{dy}}{{dt}} = - 2{C_1}\\sin 2t + 2{C_2}\\cos 2t"
"x = 2 - \\frac{{dy}}{{dt}} = 2 + 2{C_1}\\sin 2t - 2{C_2}\\cos 2t"
Answer: "y = {C_1}\\cos 2t + {C_2}\\sin 2t - \\frac{1}{4},\\,\\,x = 2 + 2{C_1}\\sin 2t - 2{C_2}\\cos 2t"
Comments
Leave a comment