Answer to Question #330181 in Differential Equations for mnamed

Question #330181

solve system of linear differential equations  dx/dt-4y=1 and dy/dt+x=2


1
Expert's answer
2022-04-18T16:13:27-0400

From second equation:

x=2dydtdxdt=d2ydt2x = 2 - \frac{{dy}}{{dt}} \Rightarrow \frac{{dx}}{{dt}} = - \frac{{{d^2}y}}{{d{t^2}}}

Substitute into the first equation:

d2ydt24y=1d2ydt2+4y=1- \frac{{{d^2}y}}{{d{t^2}}} - 4y = 1 \Rightarrow \frac{{{d^2}y}}{{d{t^2}}} + 4y = - 1

We solve the resulting differential equation.

Characteristic equation:

k2+4=0k2=4k=±2i{k^2} + 4 = 0 \Rightarrow {k^2} = - 4 \Rightarrow k = \pm 2i

Then the general solution of the homogeneous equation has the form:

y0=C1cos2t+C2sin2t{y_0} = {C_1}\cos 2t + {C_2}\sin 2t

A particular solution will be sought in the form:

Y=AdYdt=d2Ydt2=0Y = A \Rightarrow \frac{{dY}}{{dt}} = \frac{{{d^2}Y}}{{d{t^2}}} = 0

Substitute into the equation:

4A=1A=Y=144A = - 1 \Rightarrow A = Y = - \frac{1}{4}

Then

y=y0+Y=C1cos2t+C2sin2t14dydt=2C1sin2t+2C2cos2ty = {y_0} + Y = {C_1}\cos 2t + {C_2}\sin 2t - \frac{1}{4} \Rightarrow \frac{{dy}}{{dt}} = - 2{C_1}\sin 2t + 2{C_2}\cos 2t

x=2dydt=2+2C1sin2t2C2cos2tx = 2 - \frac{{dy}}{{dt}} = 2 + 2{C_1}\sin 2t - 2{C_2}\cos 2t

Answer: y=C1cos2t+C2sin2t14,  x=2+2C1sin2t2C2cos2ty = {C_1}\cos 2t + {C_2}\sin 2t - \frac{1}{4},\,\,x = 2 + 2{C_1}\sin 2t - 2{C_2}\cos 2t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment