Solve the homogeneous differential equation 𝑥𝑦 𝑑𝑦/𝑑𝑥 = 𝑦2 + 𝑥2 𝑑y/𝑑𝑥 .
xydydx=y2+x2dydxy=zxy′=z′x+zxzx(z′x+z)=z2x2+x2(z′x+z)zz′x+z2=z2+z′x+zz′(z−1)x=zz−1zdz=dxxz−ln∣z∣+C′=ln∣x∣yx−ln∣y∣+ln∣x∣+C′=ln∣x∣yx−ln∣y∣=Constxy\frac{dy}{dx}=y^2+x^2\frac{dy}{dx}\\y=zx\\y'=z'x+z\\xzx\left( z'x+z \right) =z^2x^2+x^2\left( z'x+z \right) \\zz'x+z^2=z^2+z'x+z\\z'\left( z-1 \right) x=z\\\frac{z-1}{z}dz=\frac{dx}{x}\\z-\ln \left| z \right|+C'=\ln \left| x \right|\\\frac{y}{x}-\ln \left| y \right|+\ln \left| x \right|+C'=\ln \left| x \right|\\\frac{y}{x}-\ln \left| y \right|=Constxydxdy=y2+x2dxdyy=zxy′=z′x+zxzx(z′x+z)=z2x2+x2(z′x+z)zz′x+z2=z2+z′x+zz′(z−1)x=zzz−1dz=xdxz−ln∣z∣+C′=ln∣x∣xy−ln∣y∣+ln∣x∣+C′=ln∣x∣xy−ln∣y∣=Const
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments