Question #320538

Find the particular solution for the following equation y"-y'-12y=te^4t


1
Expert's answer
2022-03-31T05:23:09-0400

yy12y=te4tλ2λ12=0λ{4,3}ThustheformofparticularsolutionistP(t)e4t,Pisapolynomialofpower1y=t(A+Bt)e4t=(At+Bt2)e4ty=(A+(2B+4A)t+4Bt2)e4ty=(8A+2B+(16A+16B)t+16Bt2)e4t(8A+2B+(16A+16B)t+16Bt2A(2B+4A)t4Bt212At12Bt2)e4t=te4t{7A+2B=014B=10B=0{A=149B=114y=(149t+114t2)e4ty''-y'-12y=te^{4t}\\\lambda ^2-\lambda -12=0\Rightarrow \lambda \in \left\{ 4,-3 \right\} \\Thus\,\,the\,\,form\,\,of\,\,particular\,\,solution\,\,is\,\,tP\left( t \right) e^{4t},P\,\,is\,\,a\,\,polynomial\,\,of\,\,power\,\,1\\y=t\left( A+Bt \right) e^{4t}=\left( At+Bt^2 \right) e^{4t}\\y'=\left( A+\left( 2B+4A \right) t+4Bt^2 \right) e^{4t}\\y''=\left( 8A+2B+\left( 16A+16B \right) t+16Bt^2 \right) e^{4t}\\\left( 8A+2B+\left( 16A+16B \right) t+16Bt^2-A-\left( 2B+4A \right) t-4Bt^2-12At-12Bt^2 \right) e^{4t}=te^{4t}\\\left\{ \begin{array}{c} 7A+2B=0\\ 14B=1\\ 0B=0\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} A=-\frac{1}{49}\\ B=\frac{1}{14}\\\end{array} \right. \\y=\left( -\frac{1}{49}t+\frac{1}{14}t^2 \right) e^{4t}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS