y′′−y′−12y=te4tλ2−λ−12=0⇒λ∈{4,−3}ThustheformofparticularsolutionistP(t)e4t,Pisapolynomialofpower1y=t(A+Bt)e4t=(At+Bt2)e4ty′=(A+(2B+4A)t+4Bt2)e4ty′′=(8A+2B+(16A+16B)t+16Bt2)e4t(8A+2B+(16A+16B)t+16Bt2−A−(2B+4A)t−4Bt2−12At−12Bt2)e4t=te4t⎩⎨⎧7A+2B=014B=10B=0⇒{A=−491B=141y=(−491t+141t2)e4t
Comments