x2y′′−2xy′+2y=ln2xHomogeneousequation:x2y′′−2xy′+2y=0y=zxy′=z+z′xy′′=2z′+z′′x2z′x2+z′′x3−2zx−2z′x2+2zx=0z′′x3=0z′′=0z=C1+C2xy=C1x+C2x2Theparticularsolutionoftheinhomogeneousequationy=Alnx+Bln2x+Cy′=xA+2Bxlnxy′′=−x2A+x22B−x22Blnx−A+2B−2Blnx−2A−2Blnx+2Alnx+2Bln2x+2C=ln2x⎩⎨⎧−3A+2B+2C=0−4B+2A=02B=1⇒⎩⎨⎧A=23B=21C=47y=C1x+C2x2+23lnx+21ln2x+47
Comments