x 2 y ′ ′ − 2 x y ′ + 2 y = ln 2 x H o m o g e n e o u s e q u a t i o n : x 2 y ′ ′ − 2 x y ′ + 2 y = 0 y = z x y ′ = z + z ′ x y ′ ′ = 2 z ′ + z ′ ′ x 2 z ′ x 2 + z ′ ′ x 3 − 2 z x − 2 z ′ x 2 + 2 z x = 0 z ′ ′ x 3 = 0 z ′ ′ = 0 z = C 1 + C 2 x y = C 1 x + C 2 x 2 T h e p a r t i c u l a r s o l u t i o n o f t h e i n h o m o g e n e o u s e q u a t i o n y = A ln x + B ln 2 x + C y ′ = A x + 2 B ln x x y ′ ′ = − A x 2 + 2 B x 2 − 2 B ln x x 2 − A + 2 B − 2 B ln x − 2 A − 2 B ln x + 2 A ln x + 2 B ln 2 x + 2 C = ln 2 x { − 3 A + 2 B + 2 C = 0 − 4 B + 2 A = 0 2 B = 1 ⇒ { A = 3 2 B = 1 2 C = 7 4 y = C 1 x + C 2 x 2 + 3 2 ln x + 1 2 ln 2 x + 7 4 x^2y''-2xy'+2y=\ln ^2x\\Homogeneous\,\,equation:\\x^2y''-2xy'+2y=0\\y=zx\\y'=z+z'x\\y''=2z'+z''x\\2z'x^2+z''x^3-2zx-2z'x^2+2zx=0\\z''x^3=0\\z''=0\\z=C_1+C_2x\\y=C_1x+C_2x^2\\The\,\,particular\,\,solution\,\,of\,\,the\,\,inhomogeneous\,\,equation\,\,\\y=A\ln x+B\ln ^2x+C\\y'=\frac{A}{x}+2B\frac{\ln x}{x}\\y''=-\frac{A}{x^2}+\frac{2B}{x^2}-\frac{2B\ln x}{x^2}\\-A+2B-2B\ln x-2A-2B\ln x+2A\ln x+2B\ln ^2x+2C=\ln ^2x\\\left\{ \begin{array}{c} -3A+2B+2C=0\\ -4B+2A=0\\ 2B=1\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} A=\frac{3}{2}\\ B=\frac{1}{2}\\ C=\frac{7}{4}\\\end{array} \right. \\y=C_1x+C_2x^2+\frac{3}{2}\ln x+\frac{1}{2}\ln ^2x+\frac{7}{4} x 2 y ′′ − 2 x y ′ + 2 y = ln 2 x Ho m o g e n eo u s e q u a t i o n : x 2 y ′′ − 2 x y ′ + 2 y = 0 y = z x y ′ = z + z ′ x y ′′ = 2 z ′ + z ′′ x 2 z ′ x 2 + z ′′ x 3 − 2 z x − 2 z ′ x 2 + 2 z x = 0 z ′′ x 3 = 0 z ′′ = 0 z = C 1 + C 2 x y = C 1 x + C 2 x 2 T h e p a r t i c u l a r so l u t i o n o f t h e inh o m o g e n eo u s e q u a t i o n y = A ln x + B ln 2 x + C y ′ = x A + 2 B x l n x y ′′ = − x 2 A + x 2 2 B − x 2 2 B l n x − A + 2 B − 2 B ln x − 2 A − 2 B ln x + 2 A ln x + 2 B ln 2 x + 2 C = ln 2 x ⎩ ⎨ ⎧ − 3 A + 2 B + 2 C = 0 − 4 B + 2 A = 0 2 B = 1 ⇒ ⎩ ⎨ ⎧ A = 2 3 B = 2 1 C = 4 7 y = C 1 x + C 2 x 2 + 2 3 ln x + 2 1 ln 2 x + 4 7
Comments