y′′+3y′+2y=e2tHomogeneousequation:y′′+3y′+2y=0λ2+3λ+2=0λ1=−2,λ2=−1y=C1e−2t+C2e−tThefundamentalsystemofsolutions:y1=e−t,y2=e−2ty(t)=C1(t)y1+C2(t)y2Bythemethod:{y1(t)C1′(t)+y2(t)C2′(t)=0y1′(t)C1′(t)+y2′(t)C2′(t)=e2t⇒{e−tC1′(t)+e−2tC2′(t)=0−e−tC1′(t)−2e−2tC2′(t)=e2t⇒⇒{C2′(t)=−etC1′(t)e−tC1′(t)=e2t⇒{C2′(t)=−etC1′(t)C1′(t)=e3t⇒{C2′(t)=−e4tC1′(t)=e3t⇒{C1(t)=31e3t+C1C2(t)=−41e4t+C2⇒y(t)=(31e3t+C1)e−t+(−41e4t+C2)e−2t==121e2t+C1e−t+C2e−2t
Comments