Question #315343

Consider an electric circuit with an inductance of 0.05 henry, a resistance of 20 ohms, a condenser of capacitance of 100 micro farads and an E = 100 volts. Find I and Q given the initial conditions Q = 0, I = 0 at t = 0


1
Expert's answer
2022-03-22T04:21:07-0400


Due to Kirchhoff's law:

UL+UR+UC=EU_L+U_R+U_C=E (1)

where

UL=LdidtU_L=L\frac{di}{dt} ; UR=iRU_R=iR ; UC=1CidtU_C=\frac1C\int idt .

Let's differentiate (1):

Ld2idt2+Rdidt+1Ci=0L\frac{d^2i}{dt^2}+R\frac{di}{dt}+\frac 1C i=0

d2idt2+RLdidt+1LCi=0\frac{d^2i}{dt^2}+\frac RL\frac{di}{dt}+\frac {1}{LC} i=0

Characteristic equation:

λ2+RLλ+1LC=0\lambda^2+\frac RL\lambda+\frac {1}{LC}=0

RL=200.05=400\frac RL=\frac {20}{0.05}=400; 1LC=10.05100106=2105\frac {1}{LC}=\frac {1}{0.05\cdot 100\cdot 10^{-6}}=2\cdot10^5.

λ2+400λ+2105=0\lambda^2+400\lambda+2\cdot 10^5=0

λ=200±400j\lambda=-200\pm400j , where j=1j=\sqrt{-1} .

i(t)=e200t(C1cos400t+C2sin400t)i(t)=e^{-200t}(C_1 \cos {400t}+C_2 \sin {400t}).

it=0=C1=0;i|_{t=0}=C_1=0;

Ldidtt=0+Rit=0+UCt=0=EL\frac{di}{dt}|_{t=0}+Ri|_{t=0}+U_C|_{t=0}=E (2)

UCt=0=1CQt=0=0U_C|_{t=0}=\frac 1C Q|_{t=0}=0 ; (3)

Rit=0=0Ri|_{t=0}=0; (4)

didt=C2e200t(200sin400t+400cos400t)\frac{di}{dt}=C_2e^{-200t}(-200\cdot\sin{400t}+400\cdot\cos{400t});

didtt=0=400C2\frac{di}{dt}|_{t=0}=400\cdot C_2. (5)

Substitute (3), (4) and (5) into (2):

L400C2=EL\cdot400\cdot C_2=E;

C2=E400L=1004000.05=5C_2=\frac{E}{400\cdot L}=\frac{100}{400\cdot 0.05}=5

i(t)=5e200tsin400t.i(t)=5\cdot e^{-200t}\cdot \sin{400t}.

Q(t)=5e200tsin400tdt=Q(t)=\int5\cdot e^{-200t}\cdot \sin{400t} dt=

1200e200t(sin400t+2cos400t)+C3-\frac{1}{200}e^{-200t}(\sin{400t}+2\cos{400t})+C_3;

Qt=0=12002+C3=0Q|_{t=0}=-\frac{1}{200}\cdot2+C_3=0;

C3=1100C_3=\frac{1}{100}

Q(t)=1200[2e200t(sin400t+2cos400t)]Q(t)=\frac{1}{200}[2-e^{-200t}(\sin{400t}+2\cos{400t})] .

Answer:

i(t)=5e200tsin400ti(t)=5\cdot e^{-200t}\cdot \sin{400t} ;

Q(t)=1200[2e200t(sin400t+2cos400t)]Q(t)=\frac{1}{200}[2-e^{-200t}(\sin{400t}+2\cos{400t})] .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS