Consider an electric circuit with an inductance of 0.05 henry, a resistance of 20 ohms, a condenser of capacitance of 100 micro farads and an E = 100 volts. Find I and Q given the initial conditions Q = 0, I = 0 at t = 0
Due to Kirchhoff's law:
"U_L+U_R+U_C=E" (1)
where
"U_L=L\\frac{di}{dt}" ; "U_R=iR" ; "U_C=\\frac1C\\int idt" .
Let's differentiate (1):
"L\\frac{d^2i}{dt^2}+R\\frac{di}{dt}+\\frac 1C i=0"
"\\frac{d^2i}{dt^2}+\\frac RL\\frac{di}{dt}+\\frac {1}{LC} i=0"
Characteristic equation:
"\\lambda^2+\\frac RL\\lambda+\\frac {1}{LC}=0"
"\\frac RL=\\frac {20}{0.05}=400"; "\\frac {1}{LC}=\\frac {1}{0.05\\cdot 100\\cdot 10^{-6}}=2\\cdot10^5".
"\\lambda^2+400\\lambda+2\\cdot 10^5=0"
"\\lambda=-200\\pm400j" , where "j=\\sqrt{-1}" .
"i(t)=e^{-200t}(C_1 \\cos {400t}+C_2 \\sin {400t})".
"i|_{t=0}=C_1=0;"
"L\\frac{di}{dt}|_{t=0}+Ri|_{t=0}+U_C|_{t=0}=E" (2)
"U_C|_{t=0}=\\frac 1C Q|_{t=0}=0" ; (3)
"Ri|_{t=0}=0"; (4)
"\\frac{di}{dt}=C_2e^{-200t}(-200\\cdot\\sin{400t}+400\\cdot\\cos{400t})";
"\\frac{di}{dt}|_{t=0}=400\\cdot C_2". (5)
Substitute (3), (4) and (5) into (2):
"L\\cdot400\\cdot C_2=E";
"C_2=\\frac{E}{400\\cdot L}=\\frac{100}{400\\cdot 0.05}=5"
"i(t)=5\\cdot e^{-200t}\\cdot \\sin{400t}."
"Q(t)=\\int5\\cdot e^{-200t}\\cdot \\sin{400t} dt="
"-\\frac{1}{200}e^{-200t}(\\sin{400t}+2\\cos{400t})+C_3";
"Q|_{t=0}=-\\frac{1}{200}\\cdot2+C_3=0";
"C_3=\\frac{1}{100}"
"Q(t)=\\frac{1}{200}[2-e^{-200t}(\\sin{400t}+2\\cos{400t})]" .
Answer:
"i(t)=5\\cdot e^{-200t}\\cdot \\sin{400t}" ;
"Q(t)=\\frac{1}{200}[2-e^{-200t}(\\sin{400t}+2\\cos{400t})]" .
Comments
Leave a comment