Question #311632

Solve the given initial value problem.


dy/dx = y(2x^2 +y^2)/2x^3


subject to y(1) = 1.


1
Expert's answer
2022-03-15T17:55:56-0400

 Solve Bernoulli’s equation dy(x)dx=12x3(2x2+y(x)2)y(x), such that y(1)=1: Rewrite the equation:dy(x)dxx5y(x)=12x3y(x)3 Divide both sides by 12y(x)3:2dy(x)dxy(x)3+2x5y(x)2=x3 Let v(x)=1y(x)2, which gives dv(x)dx=2dy(x)dxy(x)3:dv(x)dx+2x5v(x)=x3 Let μ(x)=e2x5dx=ex6/3. Multiply both sides by μ(x):ex6/3dv(x)dx+(2ex6/3x5)v(x)=ex6/3x3 Substitute 2ex6/3x5=ddx(ex6/3):ex6/3dv(x)dx+ddx(ex6/3)v(x)=ex6/3x3\text{ Solve Bernoulli's equation } \frac{d y(x)}{d x}=\frac{1}{2} x^{3}\left(2 x^{2}+y(x)^{2}\right) y(x), \text{ such that } y(1)=1 :\\[4mm] \text{ Rewrite the equation:}\\[2mm] \frac{d y(x)}{d x}-x^{5} y(x)=\frac{1}{2} x^{3} y(x)^{3}\\[4mm] \text{ Divide both sides by } -\frac{1}{2} y(x)^{3} :\\[2mm] -\frac{2 \frac{d y(x)}{d x}}{y(x)^{3}}+\frac{2 x^{5}}{y(x)^{2}}=-x^{3}\\[4mm] \text{ Let } v(x)=\frac{1}{y(x)^{2}},\text{ which gives } \frac{d v(x)}{d x}=-\frac{2 \frac{d y(x)}{d x}}{y(x)^{3}} :\\[2mm] \frac{d v(x)}{d x}+2 x^{5} v(x)=-x^{3}\\[3mm] \text{ Let } \mu(x)=e^{\int 2 x^{5} d x}=e^{x^{6} / 3}.\\[4mm] \text{ Multiply both sides by }\mu(x) :\\[2mm] e^{x^{6} / 3} \frac{d v(x)}{d x}+\left(2 e^{x^{6} / 3} x^{5}\right) v(x)=-e^{x^{6} / 3} x^{3} \text{ Substitute } 2 e^{x^{6} / 3} x^{5}=\frac{d}{d x}\left(e^{x^{6} / 3}\right):\\[2mm] e^{x^{6} / 3} \frac{d v(x)}{d x}+\frac{d}{d x}\left(e^{x^{6} / 3}\right) v(x)=-e^{x^{6} / 3} x^{3}


 Apply the reverse product rule fdgdx+gdfdx=ddx(fg) to the left-hand side: ddx(ex6/3v(x))=ex6/3x3 Integrate both sides with respect to x:ddx(ex6/3v(x))dx=ex6/3x3dxEvaluate the integrals:ex6/3v(x)=x63Γ(23,x63)233x2+c1, where c1 is an arbitrary constant. Divide both sides by μ(x)=ex6/3:v(x)=ex6/3(x4Γ(23,x63)233(x6)2/3+c1) Solve for y(x) in v(x)=1y(x)2y(x)=ex6/6x63x4Γ(23,x63)233+c1(x6)2/3 or y(x)=ex6/6x63x4Γ(23,x63)233+c1(x6)2/3\text{ Apply the reverse product rule } f \frac{d g}{d x}+g \frac{d f}{d x}=\frac{d}{d x}(f g) \text{ to the left-hand side: } \frac{d}{d x}\left(e^{x^{6} / 3} v(x)\right)=-e^{x^{6} / 3} x^{3}\\[4mm] \text{ Integrate both sides with respect to } x :\\[2mm] \int \frac{d}{d x}\left(e^{x^{6} / 3} v(x)\right) d x=\int-e^{x^{6} / 3} x^{3} d x\\[4mm] \text{Evaluate the integrals:}\\[2mm] e^{x^{6} / 3} v(x)=-\frac{\sqrt[3]{-x^{6}} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3} x^{2}}+c_{1}, \text{ where } c_{1} \text{ is an arbitrary constant.}\\[4mm] \text{ Divide both sides by }\mu(x)=e^{x^{6} / 3}:\\[2mm] v(x)=e^{-x^{6} / 3}\left(\frac{x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}\left(-x^{6}\right)^{2 / 3}}+c_{1}\right)\\[4mm] \text{ Solve for }y(x) \text{ in } v(x)=\frac{1}{y(x)^{2}}\\[2mm] y(x)=-\frac{e^{x^{6} / 6} \sqrt[3]{-x^{6}}}{\sqrt{\frac{x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}}+c_{1}\left(-x^{6}\right)^{2 / 3}}} \text { or } y(x)=\frac{e^{x^{6} / 6} \sqrt[3]{-x^{6}}}{\sqrt{\frac{x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}}+c_{1}\left(-x^{6}\right)^{2 / 3}}}


 For y(x)=ex6/6x63x4Γ(23,x63)233+(x6)2/3c1, solve for c1 using the initial conditions: Substitute y(1)=1 into y(x)=ex6/6x63x4Γ(23,x63)233+(x6)2/3c1:13e6(1)2/3c1+r(23,13)233=1 The equation has no solution.y(x)=ex6/6x63x4r(23,x63)233+c1(x6)2/3 cannot satisfy the initial condition, which means no solution exists. For y(x)=ex6/6x63x4Γ(23,x63)233+(x6)2/3c1, solve for c1 using the initial conditions: Substitute y(1)=1 into y(x)=ex6/6x63x4Γ(23,x63)233+(x6)2/3c1:\text{ For } y(x)=-\frac{e^{x^{6} / 6} \sqrt[3]{-x^{6}}}{\sqrt{\frac{x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}}+\left(-x^{6}\right)^{2 / 3} c_{1}}}, \text{ solve for } c_{1} \text{ using the initial conditions:}\\[4mm] \text{ Substitute }y(1)=1 \text{ into } y(x)=-\frac{e^{x^{6} / 6 \sqrt[3]{-x^{6}}}}{\sqrt{\frac{x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}}+\left(-x^{6}\right)^{2 / 3} c_{1}}} :\\[2mm] -\frac{\sqrt[3]{-1} \sqrt[6]{e}}{\sqrt{(-1)^{2 / 3} c_{1}+\frac{r\left(\frac{2}{3},-\frac{1}{3}\right)}{2 \sqrt[3]{3}}}}=1\\[4mm] \text{ The equation has no solution.}\\[2mm] y(x)=-\frac{e^{x^{6} / 6} \sqrt[3]{-x^{6}}}{\sqrt{\frac{x^{4} r\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}}+c_{1}\left(-x^{6}\right)^{2 / 3}}}\\[2mm] \text{ cannot satisfy the initial condition, which means no solution exists.}\\[2mm] \text{ For } y(x)=\frac{e^{x^{6} / 6} \sqrt[3]{-x^{6}}}{\sqrt{\frac{x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}}+\left(-x^{6}\right)^{2 / 3} c_{1}}}, \text{ solve for } c_{1} \text{ using the initial conditions:}\\[4mm] \text{ Substitute } y(1)=1 \text{ into } y(x)=\frac{e^{x^{6} / 6} \sqrt[3]{-x^{6}}}{\sqrt{\frac{x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}}+\left(-x^{6}\right)^{2 / 3} c_{1}}}:


13e6(1)2/3c1+Γ(23,13)233=1Solve the equation:c1=16(12(12e3+32/3Γ(23,13))+32i36Γ(23,13)) Substitute c1=16(12(12e3+32/3Γ(23,13))+32i36Γ(23,13)) into y(x)=ex6/6x63x4Γ(23,x63)233+(x6)2/3c1y(x)=23ex6/6x632×32/3x4Γ(23,x63)+(36Γ(23,13)(3i+3)+12e3)(x6)2/3 Collecting the solutions, we have:y(x)=23ex6/6x632×32/3x4Γ(23,x63)+(36Γ(23,13)(3i+3)+12e3)(x6)2/3\frac{\sqrt[3]{-1} \sqrt[6]{e}}{\sqrt{(-1)^{2 / 3} c_{1}+\frac{\Gamma\left(\frac{2}{3},-\frac{1}{3}\right)}{2 \sqrt[3]{3}}}}=1\\[4mm] \text{Solve the equation:}\\[2mm] c_{1}=\frac{1}{6}\left(\frac{1}{2}\left(12 \sqrt[3]{e}+3^{2 / 3} \Gamma\left(\frac{2}{3},-\frac{1}{3}\right)\right)+\frac{3}{2} i \sqrt[6]{3} \Gamma\left(\frac{2}{3},-\frac{1}{3}\right)\right)\\[4mm] \text{ Substitute } c_{1}=\frac{1}{6}\left(\frac{1}{2}\left(12 \sqrt[3]{e}+3^{2 / 3} \Gamma\left(\frac{2}{3},-\frac{1}{3}\right)\right)+\frac{3}{2} i \sqrt[6]{3} \Gamma\left(\frac{2}{3},-\frac{1}{3}\right)\right) \text{ into } y(x)=\frac{e^{x^{6} / 6} \sqrt[3]{-x^{6}}}{\sqrt{\frac{x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)}{2 \sqrt[3]{3}}+\left(-x^{6}\right)^{2 / 3} c_{1}}}\\[2mm] y(x)=\frac{2 \sqrt{3} e^{x^{6} / 6 \sqrt[3]{-x^{6}}}}{\sqrt{2 \times 3^{2 / 3} x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)+\left(\sqrt[6]{3} \Gamma\left(\frac{2}{3},-\frac{1}{3}\right)(3 i+\sqrt{3})+12 \sqrt[3]{e}\right)\left(-x^{6}\right)^{2 / 3}}}\\[4mm] \text{ Collecting the solutions, we have:} \\[2mm] y(x) = \frac{2 \sqrt{3} e^{x^{6} / 6} \sqrt[3]{-x^{6}}}{\sqrt{2 \times 3^{2 / 3} x^{4} \Gamma\left(\frac{2}{3},-\frac{x^{6}}{3}\right)+\left(\sqrt[6]{3} \Gamma\left(\frac{2}{3},-\frac{1}{3}\right)(3 i+\sqrt{3})+12 \sqrt[3]{e}\right)\left(-x^{6}\right)^{2 / 3}}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS