Question #308413

3d²y/dx²+dy/dx-14y=0y(0)=1y(0)=-1


1
Expert's answer
2022-03-15T15:09:58-0400
3d2ydx2+dydx14y=03\frac{d²y}{dx²}+\frac{dy}{dx}-14y=0

The characteristic equation is as follows

3k2+k14=03k^2+k-14=0

Roots

k1=7/3,k2=2k_1=-7/3,\quad k_2=2

General solution of DE

y(x)=C1e7/3x+C2e2xy(x)=C_1e^{-7/3x}+C_2e^{2x}

Using initial condition, we obtain


y(0)=C1+C2=1y(0)=73C1+2C2=1y(0)=C_1+C_2=1\\ y'(0)=\frac{-7}{3}C_1+2C_2=-1

Roots:

C1=9/13,C2=4/13C_1=9/13,\quad C_2=4/13

Finally, the particular solution of DE


y(x)=9/13e7/3x+4/13e2xy(x)=9/13e^{-7/3x}+4/13e^{2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS