Question #308135

Find the equation of the solution to dy/dx = x^(5) * y through the point (x;y)=(1;2)



1
Expert's answer
2022-03-14T19:57:26-0400

dydx=x5y,\frac{dy}{dx}=x⁵y, (x,y)=(1,2)(x,y)=(1,2)


dyy=x5dx\frac{dy}{y}=x⁵dx


Integrating both sides, we have;


lny=x66+clny=\frac{x⁶}{6}+c


Recall that y(1)=2


ln2=16+cln2=\frac{1}{6}+c


c=ln216c=ln2-\frac{1}{6}


c=0.53c=0.53


lny=x66+0.53lny=\frac{x⁶}{6}+0.53


=>y=ex66+0.53=>y=e^{\frac{x⁶}{6}+0.53}


=>y=ex66e0.53=>y=e^{\frac{x⁶}{6}}e^{0.53}


=>y=1.70ex66=>y=1.70e^{\frac{x⁶}{6}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS