Find the equation of the solution to dy/dx = x^(5) * y through the point (x;y)=(1;2)
dydx=x5y,\frac{dy}{dx}=x⁵y,dxdy=x5y, (x,y)=(1,2)(x,y)=(1,2)(x,y)=(1,2)
dyy=x5dx\frac{dy}{y}=x⁵dxydy=x5dx
Integrating both sides, we have;
lny=x66+clny=\frac{x⁶}{6}+clny=6x6+c
Recall that y(1)=2
ln2=16+cln2=\frac{1}{6}+cln2=61+c
c=ln2−16c=ln2-\frac{1}{6}c=ln2−61
c=0.53c=0.53c=0.53
lny=x66+0.53lny=\frac{x⁶}{6}+0.53lny=6x6+0.53
=>y=ex66+0.53=>y=e^{\frac{x⁶}{6}+0.53}=>y=e6x6+0.53
=>y=ex66e0.53=>y=e^{\frac{x⁶}{6}}e^{0.53}=>y=e6x6e0.53
=>y=1.70ex66=>y=1.70e^{\frac{x⁶}{6}}=>y=1.70e6x6
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments