Find a solution to dy/dx=xy+9x+4y+36
If necessary, use K to denote an arbitrary constant.
The given equation can be written as, dydx=(x+4)(y+9)\dfrac{dy}{dx} = (x+4)(y+9)dxdy=(x+4)(y+9)
Separating the variables, dyy+9=(x+4)dx\dfrac{dy}{y+9} = (x+4)dxy+9dy=(x+4)dx
Integrating we get,
log(y+9)=x22+4x+cy+9=e12(x2+8x+2c)y=Ke12(x2+8x)−9, where K=ec\begin{aligned} \log (y+9) &= \dfrac{x^{2}}{2}+4x + c\\ y+9 &= e^{\frac{1}{2}(x^2+8x+2c)}\\ y&= Ke^{\frac{1}{2}(x^2+8x)} -9,~~~\text{where } K = e^{c} \end{aligned}log(y+9)y+9y=2x2+4x+c=e21(x2+8x+2c)=Ke21(x2+8x)−9, where K=ec
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments