Question #308130

Find a solution to dy/dx=xy+9x+4y+36




If necessary, use K to denote an arbitrary constant.


1
Expert's answer
2022-03-14T18:24:42-0400

The given equation can be written as, dydx=(x+4)(y+9)\dfrac{dy}{dx} = (x+4)(y+9)


Separating the variables, dyy+9=(x+4)dx\dfrac{dy}{y+9} = (x+4)dx


Integrating we get,


log(y+9)=x22+4x+cy+9=e12(x2+8x+2c)y=Ke12(x2+8x)9,   where K=ec\begin{aligned} \log (y+9) &= \dfrac{x^{2}}{2}+4x + c\\ y+9 &= e^{\frac{1}{2}(x^2+8x+2c)}\\ y&= Ke^{\frac{1}{2}(x^2+8x)} -9,~~~\text{where } K = e^{c} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS