The fourth-degree polynomial
f(x) =230x⁴ +18x³+9x² -221x-9
Has two real zeros, one in[-1,0] which is -0.0406593. Attempt to approximate this zero to within 10^-2 using the
a) secant method( using the endpoint of each Interval approximation)
b) Newton' method(use the midpoint of each Interval as the initial approximation
a. Let x0=-1,x1=0,e=0.01
f(0)=-9
f(-1)=230-18+9+221-9=433
"x_2=x_1-\\frac{x_1-x_0}{f(x_1)-f(x_0)}=0-\\frac{0-(-1)}{-9-433}(-9)=-0.02"
f(x2)=0.0000368-0.000144+0.0036+4,42-9=-4.496
4.496>0.01
"x_3=-0.02-\\frac{-0.02-0}{-4.496+9}(-4.496)=-0.04"
f(-0.04)=0.0006-0.001+0.0144+8.84-9=0.007
0.007<e
x=-0.04
b. x0=-0.5, e=0.01
f'(x)=920x3+54x2+18x-221
f(-0.5)=14,375-2.25+2.25+110.5-9=115.875
f'(-0.5)=-115+13.5-9-221=-331.5
"x_1=x_0-f(x)\/f'(x)=-0.5+115.875\/331.5=-0.15"
x0-x1=-0.5+0.15=-0.35
0.35>e
f(-0.15)=0.116-0.06+0.2+33.15-9=24.406
f'(-0.15)=-3,105+1.215-2,7-221=-220.19
x2=-0.15+24.406/220.19=-0.04
x1-x2=-0.15+0.04=-0.11>e
f(-0.04)=0.0006-0.001+0.0144+8.84-9=0.007
f'(-0.04)=-0.06+0.0864-0.72-221=-221.69
x3=-0.04+0.007/221.69=-0.04
x2- x3=0.00003<e
x=-0.04
Comments
Leave a comment