Question #304625

Find the particular solution of ydx - 4dy = x ^ 2 dy when x = 4 and y = 1


1
Expert's answer
2022-03-02T12:40:07-0500
ydx4dy=x2dyydx-4dy=x^2dy

(x2+4)dy=ydx(x^2+4)dy=ydx

dyy=dxx2+4\dfrac{dy}{y}=\dfrac{dx}{x^2+4}

Integrate


dyy=dxx2+4\int\dfrac{dy}{y}=\int\dfrac{dx}{x^2+4}


lny=12tan1(x/2)+C\ln|y|=\dfrac{1}{2}\tan^{-1}(x/2)+C

When x=4x = 4 and y=1y = 1


ln1=12tan1(4/2)+C\ln|1|=\dfrac{1}{2}\tan^{-1}(4/2)+C

C=12tan1(2)C=-\dfrac{1}{2}\tan^{-1}(2)

The particular solution is


lny=12tan1(x/2)12tan1(2)\ln|y|=\dfrac{1}{2}\tan^{-1}(x/2)-\dfrac{1}{2}\tan^{-1}(2)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS