The given equation is:
f(x,y,z,p,q)=(p+q)(px+qy)−1=p2x+pqy+pqx+q2y−1=0
Thus the Charpit's auxiliary equations are:
p(p+q)dp=q(p+q)dq=−p(2px+qy+qx)−q(py+px+2qy)dz=−(2px+qy+qx)dx=−(py+px+2qy)dy
Taking the first two equations we get p=aq for some constant a . Putting it in original equation we get:
q2=(a+1)(ax+y)1
and
p2=(a+1)(ax+y)a2 .
Thus p=(a+1)(ax+y)a
p=(a+1)(ax+y)a and q=(a+1)(ax+y)1
Putting this values of p,q in dz=pdx+qdy we get:
dz=(a+1)(ax+y)d(ax+y)
Thus integrating we get,
z(a+1)21=2(ax+y)21+b
where a,b are constants.
Comments