The given equation is:
f ( x , y , z , p , q ) = ( p + q ) ( p x + q y ) − 1 = p 2 x + p q y + p q x + q 2 y − 1 = 0 f(x,y,z,p,q)=(p+q)(px +qy)-1 = p^2x+pqy +pqx+q^2y-1 =0 f ( x , y , z , p , q ) = ( p + q ) ( p x + q y ) − 1 = p 2 x + pq y + pq x + q 2 y − 1 = 0
Thus the Charpit's auxiliary equations are:
d p p ( p + q ) = d q q ( p + q ) = d z − p ( 2 p x + q y + q x ) − q ( p y + p x + 2 q y ) = d x − ( 2 p x + q y + q x ) = d y − ( p y + p x + 2 q y ) {dp \over p(p+q)}={dq \over q(p+q)}= {dz \over -p(2px+qy+qx)-q(py+px+2qy)}={dx \over {-(2px+qy+qx)}}={dy \over {-(py+px+2qy)}} p ( p + q ) d p = q ( p + q ) d q = − p ( 2 p x + q y + q x ) − q ( p y + p x + 2 q y ) d z = − ( 2 p x + q y + q x ) d x = − ( p y + p x + 2 q y ) d y
Taking the first two equations we get p = a q p = aq p = a q for some constant a a a . Putting it in original equation we get:
q 2 = 1 ( a + 1 ) ( a x + y ) q^2 = {1 \over (a+1)(ax+y)} q 2 = ( a + 1 ) ( a x + y ) 1
and
p 2 = a 2 ( a + 1 ) ( a x + y ) p^2 ={a^2 \over (a+1)(ax+y)} p 2 = ( a + 1 ) ( a x + y ) a 2 .
Thus p = a ( a + 1 ) ( a x + y ) p= {a \over \sqrt{(a+1)(ax+y)}} p = ( a + 1 ) ( a x + y ) a
p = a ( a + 1 ) ( a x + y ) p= {a \over \sqrt{(a+1)(ax+y)}} p = ( a + 1 ) ( a x + y ) a and q = 1 ( a + 1 ) ( a x + y ) q= {1 \over \sqrt{(a+1)(ax+y)}} q = ( a + 1 ) ( a x + y ) 1
Putting this values of p , q p, q p , q in d z = p d x + q d y dz = pdx + qdy d z = p d x + q d y we get:
d z = d ( a x + y ) ( a + 1 ) ( a x + y ) dz = {d(ax+y)\over \sqrt{(a+1)(ax+y)}} d z = ( a + 1 ) ( a x + y ) d ( a x + y )
Thus integrating we get,
z ( a + 1 ) 1 2 = 2 ( a x + y ) 1 2 + b z(a+1)^{\frac 12}=2(ax+y)^{\frac 12}+b z ( a + 1 ) 2 1 = 2 ( a x + y ) 2 1 + b
where a , b a, b a , b are constants.
Comments