Solve (p + q)(px + qy) = 1, using Charpit’s method.
The given equation is:
"f(x,y,z,p,q)=(p+q)(px +qy)-1 = p^2x+pqy +pqx+q^2y-1 =0"
Thus the Charpit's auxiliary equations are:
"{dp \\over p(p+q)}={dq \\over q(p+q)}= {dz \\over -p(2px+qy+qx)-q(py+px+2qy)}={dx \\over {-(2px+qy+qx)}}={dy \\over {-(py+px+2qy)}}"
Taking the first two equations we get "p = aq" for some constant "a" . Putting it in original equation we get:
"q^2 = {1 \\over (a+1)(ax+y)}"
and
"p^2 ={a^2 \\over (a+1)(ax+y)}" .
Thus "p= {a \\over \\sqrt{(a+1)(ax+y)}}"
"p= {a \\over \\sqrt{(a+1)(ax+y)}}" and "q= {1 \\over \\sqrt{(a+1)(ax+y)}}"
Putting this values of "p, q" in "dz = pdx + qdy" we get:
"dz = {d(ax+y)\\over \\sqrt{(a+1)(ax+y)}}"
Thus integrating we get,
"z(a+1)^{\\frac 12}=2(ax+y)^{\\frac 12}+b"
where "a, b" are constants.
Comments
Leave a comment