(a) The differential equation (2π₯ 2 + ππ¦ 2 )ππ₯ + ππ₯π¦ ππ¦ = 0 can made exact by multiplying with integrating factor 1 π₯ β 2.
Then find the relation between π and π. (b) Find one fourth roots of unity
(a)
"(2+b\\dfrac{y^2}{x^2})dx+c(\\dfrac{y}{x})dy=0"
"\\dfrac{\\partial}{dx}(c(\\dfrac{y}{x}))=\\dfrac{\\partial}{\\partial y}(2+b\\dfrac{y^2}{x^2})"
"-c(\\dfrac{y}{x^2})=2b(\\dfrac{y}{x^2})"
"c=-2b"
(b) The polar form ofΒ "1" Β isΒ "\\cos(0)+i\\sin(0)."
"k=1, \\sqrt[4]{1}(\\cos(\\dfrac{0+2\\pi (1)}{4})+i\\sin(\\dfrac{0+2\\pi (1)}{4}))=i"
"k=2, \\sqrt[4]{1}(\\cos(\\dfrac{0+2\\pi (2)}{4})+i\\sin(\\dfrac{0+2\\pi (2)}{4}))=-1"
"k=3, \\sqrt[4]{1}(\\cos(\\dfrac{0+2\\pi (3)}{4})+i\\sin(\\dfrac{0+2\\pi (3)}{4}))=-i"
"\\sqrt[4]{1}=1"
"\\sqrt[4]{1}=i"
"\\sqrt[4]{1}=-1"
"\\sqrt[4]{1}=-i"
Comments
Leave a comment