Answer to Question #296950 in Differential Equations for adarsh

Question #296950

(a) The differential equation (2𝑥 2 + 𝑏𝑦 2 )𝑑𝑥 + 𝑐𝑥𝑦 𝑑𝑦 = 0 can made exact by multiplying with integrating factor 1 𝑥 ⁄ 2.

Then find the relation between 𝑏 and 𝑐. (b) Find one fourth roots of unity


1
Expert's answer
2022-02-14T16:48:34-0500

(a)


(1x2)(2x2+by2)dx+(1x2)cxydy=0(\dfrac{1}{x^2})(2x^2+by^2)dx+(\dfrac{1}{x^2})cxydy=0

(2+by2x2)dx+c(yx)dy=0(2+b\dfrac{y^2}{x^2})dx+c(\dfrac{y}{x})dy=0

dx(c(yx))=y(2+by2x2)\dfrac{\partial}{dx}(c(\dfrac{y}{x}))=\dfrac{\partial}{\partial y}(2+b\dfrac{y^2}{x^2})

c(yx2)=2b(yx2)-c(\dfrac{y}{x^2})=2b(\dfrac{y}{x^2})

c=2bc=-2b

(b) The polar form of 11  is cos(0)+isin(0).\cos(0)+i\sin(0).


k=0,14(cos(0+2π(0)4)+isin(0+2π(0)4))=1k=0, \sqrt[4]{1}(\cos(\dfrac{0+2\pi (0)}{4})+i\sin(\dfrac{0+2\pi (0)}{4}))=1

k=1,14(cos(0+2π(1)4)+isin(0+2π(1)4))=ik=1, \sqrt[4]{1}(\cos(\dfrac{0+2\pi (1)}{4})+i\sin(\dfrac{0+2\pi (1)}{4}))=i

k=2,14(cos(0+2π(2)4)+isin(0+2π(2)4))=1k=2, \sqrt[4]{1}(\cos(\dfrac{0+2\pi (2)}{4})+i\sin(\dfrac{0+2\pi (2)}{4}))=-1

k=3,14(cos(0+2π(3)4)+isin(0+2π(3)4))=ik=3, \sqrt[4]{1}(\cos(\dfrac{0+2\pi (3)}{4})+i\sin(\dfrac{0+2\pi (3)}{4}))=-i

14=1\sqrt[4]{1}=1


14=i\sqrt[4]{1}=i


14=1\sqrt[4]{1}=-1


14=i\sqrt[4]{1}=-i



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment