1.
y2=y1v
y2=t2v,y2′=2tv+t2v′,y2′′=2v+2tv′+2tv′+t2v′′=2v+4tv′+t2v′′
t2(2v+4tv′+t2v′′)−4t(2tv+t2v′)+6t2v=0
t2v′′=0
v=t
y2=t3
2.
Wronskian:
W=y1y2′−y1′y2=ce−∫P(x)dx
where P(x)=−1/x
then:
W=cx
y2′sinx2−2y2xcosx2=cx
y2=uv,y2′=u′v+uv′
(u′v+uv′)sinx2−2uvxcosx2=cx
u′v=cx/(sinx2)
v′−2vxcotx2=0
dv/v=2xcotx2dx
lnv=ln(sinx2)
v=sinx2
du=cxdx/(sinx4)
u=64ln(sinx)+csc2x(x(cscxcos3x−3cotx)−1)
y2=64ln(sinx)+csc2x(x(cscxcos3x−3cotx)−1)sin2x
Comments