Question #284190

I.In each of Problems 23 through 30, use the method of reduction of order to find a second solution of the given differential equation.

1.  t2y″ − 4ty′ + 6y = 0, y1(t) = t2

2.  xy″ − y′ + 4x3y = 0, x > 0; y1(x) = sin x2


1
Expert's answer
2022-01-04T12:16:59-0500

1.

We seek a solution of the form y(t)=v(t)y1(t).y(t) = v(t)y_1(t). This gives us


y(t)=v(t)t2y(t)=v(t)t^2

y(t)=vt2+2tvy'(t)=v't^2+2tv

y(t)=vt2+4tv+2vy''(t)=v''t^2+4tv'+2v

Substitute


t4v+4t3v+2t2v4t3v8t2v+6t2v=0t^4v''+4t^3v'+2t^2v− 4t^3v'-8t^2v+6t^2v = 0

t4v=0t^4v'' = 0

v=0v''=0

Integrate


v=c1v'=c_1

Integrate

v=c1t+c2v=c_1t+c_2

Therefore, the general solution is


y(t)=(c1t+c2)t2y(t)=(c_1t+c_2)t^2

y(t)=c1t3+c2t2y(t)=c_1t^3+c_2t^2

The second solution is y2(t)=t3.y_2(t)=t^3.


2.

We seek a solution of the form y(x)=v(x)y1(x).y(x) = v(x)y_1(x). This gives us


y(x)=v(x)sin(x2)y(x)=v(x)\sin(x^2)

y(x)=vsin(x2)+2xcos(x2)vy'(x)=v'\sin(x^2)+2x\cos(x^2)v

y(x)=vsin(x2)+2xcos(x2)v+2cos(x2)vy''(x)=v''\sin(x^2)+2x\cos(x^2)v'+2\cos(x^2)v

4x2sin(x2)v+2xcos(x2)v-4x^2\sin(x^2)v+2x\cos(x^2)v'

Substitute


xsin(x2)v+4x2cos(x2)v+2xcos(x2)vx\sin(x^2)v''+4x^2\cos(x^2)v'+2x\cos(x^2)v

4x3sin(x2)vsin(x2)v2xcos(x2)v-4x^3\sin(x^2)v-\sin(x^2)v'-2x\cos(x^2)v

+4x3sin(x2)v(x)=0+4x^3\sin(x^2)v(x)=0

xsin(x2)v+4x2cos(x2)vsin(x2)v=0x\sin(x^2)v''+4x^2\cos(x^2)v'-\sin(x^2)v'=0

xsin(x2)v=(4x2cos(x2)+sin(x2))vx\sin(x^2)v''=(-4x^2\cos(x^2)+\sin(x^2))v'

vv=4xcos(x2)+sin(x2)x\dfrac{v''}{v'}=-4x\cos(x^2)+\dfrac{\sin(x^2)}{x}d(ln(v))=(4xcos(x2)sin(x2)+1x)dxd(\ln(v'))=(-4x\dfrac{\cos(x^2)}{\sin(x^2)}+\dfrac{1}{x})dx

Integrate


d(ln(v))=(4xcos(x2)sin(x2)+1x)dx\int d(\ln(v'))=\int (-4x\dfrac{\cos(x^2)}{\sin(x^2)}+\dfrac{1}{x})dx


Find


4xcos(x2)sin(x2)dx-\int4x\dfrac{\cos(x^2)}{\sin(x^2)}dx

u=sin(x2),du=2xcos(x2)dxu=\sin(x^2), du=2x\cos(x^2)dx

4xcos(x2)sin(x2)dx=2duu=2ln(u)+lnC1-\int4x\dfrac{\cos(x^2)}{\sin(x^2)}dx=-2\int \dfrac{du}{u}=-2\ln(u)+\ln C_1

=2ln(sin(x2))+lnC1=-2\ln(\sin(x^2))+\ln C_1

ln(v)=ln(sin2(x2))+ln(x)+lnC1\ln(v')=\ln(\sin^{-2}(x^2))+\ln(x)+\ln C_1

v=C1xsin2(x2)v'=\dfrac{C_1 x}{\sin^2(x^2)}

Integrate


v=C1xsin2(x2)dxv=\int \dfrac{C_1 x}{\sin^2(x^2)}dx

Find


C1xsin2(x2)dx\int\dfrac{C_1 x}{\sin^2(x^2)}dx

u=x2,du=2xdxu=x^2, du=2xdx

C1xsin2(x2)dx=C121sin2(u)du\int\dfrac{C_1 x}{\sin^2(x^2)}dx=\dfrac{C_1}{2}\int\dfrac{1}{\sin^2(u)}du

=C2cot(u)+C3=C2cot(x2)+C3=C_2\cot(u)+C_3=C_2\cot(x^2)+C_3

v(x)=C2cot(x2)+C3v(x)=C_2\cot(x^2)+C_3

Then


y(x)=(C2cot(x2)+C3)sin(x2)y(x)=(C_2\cot(x^2)+C_3)\sin(x^2)

=C2cos(x2)+C3sin(x2)=C_2\cos(x^2)+C_3\sin(x^2)

Therefore, the general solution is


y(x)=C2cos(x2)+C3sin(x2)y(x)=C_2\cos(x^2)+C_3\sin(x^2)

The second solution is y2(x)=cos(x2).y_2(x)=\cos(x^2).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS