1.
We seek a solution of the form y(t)=v(t)y1(t). This gives us
y(t)=v(t)t2
y′(t)=v′t2+2tv
y′′(t)=v′′t2+4tv′+2v Substitute
t4v′′+4t3v′+2t2v−4t3v′−8t2v+6t2v=0
t4v′′=0
v′′=0 Integrate
v′=c1 Integrate
v=c1t+c2 Therefore, the general solution is
y(t)=(c1t+c2)t2
y(t)=c1t3+c2t2 The second solution is y2(t)=t3.
2.
We seek a solution of the form y(x)=v(x)y1(x). This gives us
y(x)=v(x)sin(x2)
y′(x)=v′sin(x2)+2xcos(x2)v
y′′(x)=v′′sin(x2)+2xcos(x2)v′+2cos(x2)v
−4x2sin(x2)v+2xcos(x2)v′ Substitute
xsin(x2)v′′+4x2cos(x2)v′+2xcos(x2)v
−4x3sin(x2)v−sin(x2)v′−2xcos(x2)v
+4x3sin(x2)v(x)=0
xsin(x2)v′′+4x2cos(x2)v′−sin(x2)v′=0
xsin(x2)v′′=(−4x2cos(x2)+sin(x2))v′
v′v′′=−4xcos(x2)+xsin(x2)d(ln(v′))=(−4xsin(x2)cos(x2)+x1)dx Integrate
∫d(ln(v′))=∫(−4xsin(x2)cos(x2)+x1)dx
Find
−∫4xsin(x2)cos(x2)dx
u=sin(x2),du=2xcos(x2)dx
−∫4xsin(x2)cos(x2)dx=−2∫udu=−2ln(u)+lnC1
=−2ln(sin(x2))+lnC1
ln(v′)=ln(sin−2(x2))+ln(x)+lnC1
v′=sin2(x2)C1x Integrate
v=∫sin2(x2)C1xdx Find
∫sin2(x2)C1xdx
u=x2,du=2xdx
∫sin2(x2)C1xdx=2C1∫sin2(u)1du
=C2cot(u)+C3=C2cot(x2)+C3
v(x)=C2cot(x2)+C3 Then
y(x)=(C2cot(x2)+C3)sin(x2)
=C2cos(x2)+C3sin(x2) Therefore, the general solution is
y(x)=C2cos(x2)+C3sin(x2) The second solution is y2(x)=cos(x2).
Comments