a) Solve (π·
2 + 1)π¦ = 3π₯ β 8 cot π₯ where π· =
π
ππ₯
b) Find orthogonal trajectory to the curve given by π = π(1 + cos π)
a):
"(D^2+1)y=3x-8\\cot x"
Its auxiliary equation is "m^2+1=0"
"\\Rightarrow m=\\pm1"
The complementary function is: "y_c(x)=c_1\\cos x+c_2\\sin x"
Let "u(x)=\\cos x,v(x)=\\sin x"
Now, particular integral: "y_p(x)=A.u(x)+B.v(x)"
We use the method of parameters.
"A=-\\int \\dfrac{u(x)Q(x)}{w(u,v)}dx,B=\\int \\dfrac{v(x)Q(X)}{w(u,v)}dx\n\\\\w(u,v)=\\begin{vmatrix} u&v\\\\u'&v'\\end{vmatrix}=\\begin{vmatrix} \\cos x&\\sin x\\\\-\\sin x&\\cos x\\end{vmatrix}=1"
And "Q(x)=3x-8\\cot x"
Then, "A=-\\int \\dfrac{\\cos x(3x-8\\cot x)}{1}dx"
"=-3\\int x\\cos xdx+8\\int\\cos x\\cot xdx\n\\\\=-3[x \\sin x-1\\times -\\cos x]+8[\\ln \\tan(x\/2)+\\cos x]\n\\\\=-3x\\sin x+5\\cos x+8 \\ln \\tan(x\/2)" [Using integration by parts]
Next, "B=\\int \\dfrac{\\sin x(3x-8\\cot x)}{1}dx"
"=3\\int x\\sin xdx-8\\int\\sin x\\cot xdx\n\\\\=3[x\\cos x-1\\times-\\sin x]-8\\sin x\n\\\\=-3x\\cos x-5\\sin x" [Using integration by parts]
So, the particular integral is
"y_p(x)=A.u(x)+B.v(x)\n\\\\=(-3x\\sin x+5\\cos x+8 \\ln \\tan(x\/2))(\\cos x)+(-3x\\cos x-5\\sin x)(\\sin x)\n\\\\=-6x\\sin x \\cos x+5[\\cos^2x-\\sin^2x]+8\\ln \\tan(x\/2)\n\\\\=-6x\\sin x \\cos x+5\\cos2x+8\\ln \\tan(x\/2)"
Thus, the solution is
"y=y_c(x)+y_p(x)\n\\\\y=c_1\\cos x+c_2\\sin x-6x\\sin x \\cos x+5\\cos2x+8\\ln \\tan(x\/2)"
b):
Given curve is "r=a(1+\\cos \\theta)" ...(i)
Differentiating it, "d r+a \\sin \\theta d \\theta=0" ...(ii)
On eliminating the parameter ' a ' we get,
"d r+\\frac{r \\sin \\theta}{1+\\cos \\theta} d \\theta=0 \\quad or \\quad \\frac{-1}{r} \\frac{d r}{d \\theta}=\\frac{\\sin \\theta}{1+\\cos \\theta}" ...(iii)
This is the differential equation of the direction field "D_{1}" for the given family "F_{1}" .
To find the differential equation of the direction field orthological to "D_{1}", we replace "\\frac{d r}{d \\theta}"
by "-r^{2} \\frac{d \\theta}{d r}" as evident from the geometry.
Where "\\phi_{2}\\ and\\ \\Psi_{2}" are the angles for the orthogonal trajectory corresponding to the angles "\\phi_{1}\\ and\\ \\Psi_{1}" for the given family (Fig. 1) as shown below.
"\\begin{aligned}\n\n\\text { Clearly, } \\quad \\phi_{2} &=\\left(\\phi_{1} \\pm \\frac{\\pi}{2}\\right) \\text {, whence } \\tan \\phi_{2}=\\tan \\left(\\phi_{1} \\pm \\frac{\\pi}{2}\\right)=-\\cot \\phi_{1} \\\\\n\n\\left(r \\frac{d \\theta}{d r}\\right)_{2} &=-\\left(\\frac{1}{r} \\frac{d r}{d \\theta}\\right)_{1}\n\n\\end{aligned}"
Whence from (3), the differential equation for the orthogonal trajectories becomes
"r \\frac{d \\theta}{d r}=\\frac{\\sin \\theta}{1+\\cos \\theta}=\\tan \\frac{\\theta}{2}"
which is a case of variable-separable, and on integration gives
"\\log r=2 \\log \\sin \\frac{\\theta}{2}+\\log 2 c"
This is the equation of the orthogonal family "F_{2}" .
Since "r=c(1-\\cos \\theta)" represents the same curve as "r=c(1+\\cos \\theta)," the member of
"F_{2}" with label c is the same as the member of "F_{1}" with label "a=-c" . Thus the given family is selforthogonal.
Comments
Leave a comment