a):
( D 2 + 1 ) y = 3 x − 8 cot x (D^2+1)y=3x-8\cot x ( D 2 + 1 ) y = 3 x − 8 cot x
Its auxiliary equation is m 2 + 1 = 0 m^2+1=0 m 2 + 1 = 0
⇒ m = ± 1 \Rightarrow m=\pm1 ⇒ m = ± 1
The complementary function is: y c ( x ) = c 1 cos x + c 2 sin x y_c(x)=c_1\cos x+c_2\sin x y c ( x ) = c 1 cos x + c 2 sin x
Let u ( x ) = cos x , v ( x ) = sin x u(x)=\cos x,v(x)=\sin x u ( x ) = cos x , v ( x ) = sin x
Now, particular integral: y p ( x ) = A . u ( x ) + B . v ( x ) y_p(x)=A.u(x)+B.v(x) y p ( x ) = A . u ( x ) + B . v ( x )
We use the method of parameters.
A = − ∫ u ( x ) Q ( x ) w ( u , v ) d x , B = ∫ v ( x ) Q ( X ) w ( u , v ) d x w ( u , v ) = ∣ u v u ′ v ′ ∣ = ∣ cos x sin x − sin x cos x ∣ = 1 A=-\int \dfrac{u(x)Q(x)}{w(u,v)}dx,B=\int \dfrac{v(x)Q(X)}{w(u,v)}dx
\\w(u,v)=\begin{vmatrix} u&v\\u'&v'\end{vmatrix}=\begin{vmatrix} \cos x&\sin x\\-\sin x&\cos x\end{vmatrix}=1 A = − ∫ w ( u , v ) u ( x ) Q ( x ) d x , B = ∫ w ( u , v ) v ( x ) Q ( X ) d x w ( u , v ) = ∣ ∣ u u ′ v v ′ ∣ ∣ = ∣ ∣ cos x − sin x sin x cos x ∣ ∣ = 1
And Q ( x ) = 3 x − 8 cot x Q(x)=3x-8\cot x Q ( x ) = 3 x − 8 cot x
Then, A = − ∫ cos x ( 3 x − 8 cot x ) 1 d x A=-\int \dfrac{\cos x(3x-8\cot x)}{1}dx A = − ∫ 1 cos x ( 3 x − 8 cot x ) d x
= − 3 ∫ x cos x d x + 8 ∫ cos x cot x d x = − 3 [ x sin x − 1 × − cos x ] + 8 [ ln tan ( x / 2 ) + cos x ] = − 3 x sin x + 5 cos x + 8 ln tan ( x / 2 ) =-3\int x\cos xdx+8\int\cos x\cot xdx
\\=-3[x \sin x-1\times -\cos x]+8[\ln \tan(x/2)+\cos x]
\\=-3x\sin x+5\cos x+8 \ln \tan(x/2) = − 3 ∫ x cos x d x + 8 ∫ cos x cot x d x = − 3 [ x sin x − 1 × − cos x ] + 8 [ ln tan ( x /2 ) + cos x ] = − 3 x sin x + 5 cos x + 8 ln tan ( x /2 ) [Using integration by parts]
Next, B = ∫ sin x ( 3 x − 8 cot x ) 1 d x B=\int \dfrac{\sin x(3x-8\cot x)}{1}dx B = ∫ 1 sin x ( 3 x − 8 cot x ) d x
= 3 ∫ x sin x d x − 8 ∫ sin x cot x d x = 3 [ x cos x − 1 × − sin x ] − 8 sin x = − 3 x cos x − 5 sin x =3\int x\sin xdx-8\int\sin x\cot xdx
\\=3[x\cos x-1\times-\sin x]-8\sin x
\\=-3x\cos x-5\sin x = 3 ∫ x sin x d x − 8 ∫ sin x cot x d x = 3 [ x cos x − 1 × − sin x ] − 8 sin x = − 3 x cos x − 5 sin x [Using integration by parts]
So, the particular integral is
y p ( x ) = A . u ( x ) + B . v ( x ) = ( − 3 x sin x + 5 cos x + 8 ln tan ( x / 2 ) ) ( cos x ) + ( − 3 x cos x − 5 sin x ) ( sin x ) = − 6 x sin x cos x + 5 [ cos 2 x − sin 2 x ] + 8 ln tan ( x / 2 ) = − 6 x sin x cos x + 5 cos 2 x + 8 ln tan ( x / 2 ) y_p(x)=A.u(x)+B.v(x)
\\=(-3x\sin x+5\cos x+8 \ln \tan(x/2))(\cos x)+(-3x\cos x-5\sin x)(\sin x)
\\=-6x\sin x \cos x+5[\cos^2x-\sin^2x]+8\ln \tan(x/2)
\\=-6x\sin x \cos x+5\cos2x+8\ln \tan(x/2) y p ( x ) = A . u ( x ) + B . v ( x ) = ( − 3 x sin x + 5 cos x + 8 ln tan ( x /2 )) ( cos x ) + ( − 3 x cos x − 5 sin x ) ( sin x ) = − 6 x sin x cos x + 5 [ cos 2 x − sin 2 x ] + 8 ln tan ( x /2 ) = − 6 x sin x cos x + 5 cos 2 x + 8 ln tan ( x /2 )
Thus, the solution is
y = y c ( x ) + y p ( x ) y = c 1 cos x + c 2 sin x − 6 x sin x cos x + 5 cos 2 x + 8 ln tan ( x / 2 ) y=y_c(x)+y_p(x)
\\y=c_1\cos x+c_2\sin x-6x\sin x \cos x+5\cos2x+8\ln \tan(x/2) y = y c ( x ) + y p ( x ) y = c 1 cos x + c 2 sin x − 6 x sin x cos x + 5 cos 2 x + 8 ln tan ( x /2 )
b):
Given curve is r = a ( 1 + cos θ ) r=a(1+\cos \theta) r = a ( 1 + cos θ ) ...(i)
Differentiating it, d r + a sin θ d θ = 0 d r+a \sin \theta d \theta=0 d r + a sin θ d θ = 0 ...(ii)
On eliminating the parameter ' a ' we get,
d r + r sin θ 1 + cos θ d θ = 0 o r − 1 r d r d θ = sin θ 1 + cos θ d r+\frac{r \sin \theta}{1+\cos \theta} d \theta=0 \quad or \quad \frac{-1}{r} \frac{d r}{d \theta}=\frac{\sin \theta}{1+\cos \theta} d r + 1 + c o s θ r s i n θ d θ = 0 or r − 1 d θ d r = 1 + c o s θ s i n θ ...(iii)
This is the differential equation of the direction field D 1 D_{1} D 1 for the given family F 1 F_{1} F 1 .
To find the differential equation of the direction field orthological to D 1 D_{1} D 1 , we replace d r d θ \frac{d r}{d \theta} d θ d r
by − r 2 d θ d r -r^{2} \frac{d \theta}{d r} − r 2 d r d θ as evident from the geometry.
Where ϕ 2 a n d Ψ 2 \phi_{2}\ and\ \Psi_{2} ϕ 2 an d Ψ 2 are the angles for the orthogonal trajectory corresponding to the angles ϕ 1 a n d Ψ 1 \phi_{1}\ and\ \Psi_{1} ϕ 1 an d Ψ 1 for the given family (Fig. 1) as shown below.
Clearly, ϕ 2 = ( ϕ 1 ± π 2 ) , whence tan ϕ 2 = tan ( ϕ 1 ± π 2 ) = − cot ϕ 1 ( r d θ d r ) 2 = − ( 1 r d r d θ ) 1 \begin{aligned}
\text { Clearly, } \quad \phi_{2} &=\left(\phi_{1} \pm \frac{\pi}{2}\right) \text {, whence } \tan \phi_{2}=\tan \left(\phi_{1} \pm \frac{\pi}{2}\right)=-\cot \phi_{1} \\
\left(r \frac{d \theta}{d r}\right)_{2} &=-\left(\frac{1}{r} \frac{d r}{d \theta}\right)_{1}
\end{aligned} Clearly, ϕ 2 ( r d r d θ ) 2 = ( ϕ 1 ± 2 π ) , whence tan ϕ 2 = tan ( ϕ 1 ± 2 π ) = − cot ϕ 1 = − ( r 1 d θ d r ) 1
Whence from (3), the differential equation for the orthogonal trajectories becomes
r d θ d r = sin θ 1 + cos θ = tan θ 2 r \frac{d \theta}{d r}=\frac{\sin \theta}{1+\cos \theta}=\tan \frac{\theta}{2} r d r d θ = 1 + c o s θ s i n θ = tan 2 θ
which is a case of variable-separable, and on integration gives
log r = 2 log sin θ 2 + log 2 c \log r=2 \log \sin \frac{\theta}{2}+\log 2 c log r = 2 log sin 2 θ + log 2 c
This is the equation of the orthogonal family F 2 F_{2} F 2 .
Since r = c ( 1 − cos θ ) r=c(1-\cos \theta) r = c ( 1 − cos θ ) represents the same curve as r = c ( 1 + cos θ ) , r=c(1+\cos \theta), r = c ( 1 + cos θ ) , the member of
F 2 F_{2} F 2 with label c is the same as the member of F 1 F_{1} F 1 with label a = − c a=-c a = − c . Thus the given family is selforthogonal.
Comments