a) Differential equation of a LR circuit
LdtdI+RI=EdtdI+LRI=LE
Integrating factor
μ(t)=e∫(R/L)dt=e(R/L)t
e(R/L)t(dtdI+LRI)=e(R/L)tLE
d(e(R/L)tI)=e(R/L)tLEdt Integrate
∫d(e(R/L)tI)=∫e(R/L)tLEdt
e(R/L)tI=REe(R/L)t+C
I(t)=RE+Ce−(R/L)t I(0)=0
0=RE+C
C=−RE
I(t)=RE(1−e−(R/L)t)
Given E=500V,R=250 Ohm,L=640 H
Substitute
I(t)=250500(1−e−(250/640)t)
I(t)=2(1−e−(25/64)t)Find the time 𝑡 that elapses, before the current I reaches 90% of its maximum value
I(t1)=2(1−e−(25/64)t1)=2(0.9)
e−(25/64)t1=0.1
6425t1=ln(10)
t1=2.56ln(10) s
t1≈5.8946 s
b)
dtdx+x−y=tet
2x−dtdx+dtdy=et Differentiate the first equation with respect to t
dt2d2x+dtdx−dtdy=tet+et Substitute
dtdy=dtdx−2x+et
dt2d2x+dtdx−dtdx+2x−et=tet+et
dt2d2x+2x=tet+2et Corresponding homogeneous differential equation
dt2d2x+2x=0 Auxiliary equation
r2+2=0
r=±2i The general solution of the homogeneous differential equation is
xh=c1cos(2t)+c2sin(2t) Find the partial solution of the nonhomogeneous differential equation
x~=Atet+Bet
x~′=Atet+Aet+Bet
x~′′=Atet+2Aet+Bet Substitute
Atet+2Aet+Bet+2Atet+2Bet
=tet+2et
A=31,B=94a The general solution of the nonhomogeneous differential equation is
x(t)=c1cos(2t)+c2sin(2t)+31tet+94etdtdx=−c12sin(2t)+c22cos(2t)+31tet+31et+94et
y=dtdx+x−tet
y=−c12sin(2t)+c22cos(2t)
+31tet+97et+c1cos(2t)+c2sin(2t)
+31tet+94et−tet
x(t)=c1cos(2t)+c2sin(2t)+31tet+94et
y(t)=(c1+c22)cos(2t)+(−c12+c2)sin(2t)
−31tet+911et
Comments