Question #283543

a) In a circuit containing inductance 𝐿, resistance 𝑅 and voltage 𝐸, the current 𝐼 is


given by 𝐸 = 𝑅 𝐼 + 𝐿


𝑑𝐼


𝑑𝑡


. Given 𝐿 = 640 ℎ , 𝑅 = 250 𝛺 and 𝐸 =


500 𝑣𝑜𝑙𝑡 . 𝐼 being 0 when 𝑡 = 0. Find the time 𝑡 that elapses, before the current


𝐼 reaches 90% of its maximum value.


[5]


b) Solve the system:


𝑑𝑥


𝑑𝑡


+ 𝑥 − 𝑦 = 𝑡𝑒


𝑡


, 2𝑦 −


𝑑𝑥


𝑑𝑡


+


𝑑𝑦


𝑑𝑡


= 𝑒

1
Expert's answer
2021-12-30T02:53:24-0500

a) Differential equation of a LR circuit 


LdIdt+RI=EL\dfrac{dI}{dt}+RI=EdIdt+RLI=EL\dfrac{dI}{dt}+\dfrac{R}{L}I=\dfrac{E}{L}

Integrating factor


μ(t)=e(R/L)dt=e(R/L)t\mu(t)=e^{\int(R/L)dt}=e^{(R/L)t}

e(R/L)t(dIdt+RLI)=e(R/L)tELe^{(R/L)t}(\dfrac{dI}{dt}+\dfrac{R}{L}I)=e^{(R/L)t}\dfrac{E}{L}

d(e(R/L)tI)=e(R/L)tELdtd(e^{(R/L)t}I)=e^{(R/L)t}\dfrac{E}{L}dt

Integrate


d(e(R/L)tI)=e(R/L)tELdt\int d(e^{(R/L)t}I) =\int e^{(R/L)t}\dfrac{E}{L}dt

e(R/L)tI=ERe(R/L)t+Ce^{(R/L)t}I=\dfrac{E}{R}e^{(R/L)t}+C

I(t)=ER+Ce(R/L)tI(t)=\dfrac{E}{R}+Ce^{-(R/L)t}

I(0)=0I(0)=0

0=ER+C0=\dfrac{E}{R}+C

C=ERC=-\dfrac{E}{R}

I(t)=ER(1e(R/L)t)I(t)=\dfrac{E}{R}(1-e^{-(R/L)t})

Given E=500V,R=250 Ohm,L=640 HE=500V, R=250\ Ohm, L=640\ H

Substitute


I(t)=500250(1e(250/640)t)I(t)=\dfrac{500}{250}(1-e^{-(250/640)t})




I(t)=2(1e(25/64)t)I(t)=2(1-e^{-(25/64)t})

Find the time 𝑡 that elapses, before the current II reaches 90% of its maximum value


I(t1)=2(1e(25/64)t1)=2(0.9)I(t_{1})=2(1-e^{-(25/64)t_1})=2(0.9)

e(25/64)t1=0.1e^{-(25/64)t_1}=0.1

2564t1=ln(10)\dfrac{25}{64}t_1=\ln (10)

t1=2.56ln(10) st_1=2.56\ln(10) \ s

t15.8946 st_1\approx5.8946\ s

b)


dxdt+xy=tet\dfrac{dx}{dt}+x-y=te^t

2xdxdt+dydt=et2x-\dfrac{dx}{dt}+\dfrac{dy}{dt}=e^t

Differentiate the first equation with respect to tt


d2xdt2+dxdtdydt=tet+et\dfrac{d^2x}{dt^2}+\dfrac{dx}{dt}-\dfrac{dy}{dt}=te^t+e^t

Substitute


dydt=dxdt2x+et\dfrac{dy}{dt}=\dfrac{dx}{dt}-2x+e^t

d2xdt2+dxdtdxdt+2xet=tet+et\dfrac{d^2x}{dt^2}+\dfrac{dx}{dt}-\dfrac{dx}{dt}+2x-e^t=te^t+e^t

d2xdt2+2x=tet+2et\dfrac{d^2x}{dt^2}+2x=te^t+2e^t

Corresponding homogeneous differential equation


d2xdt2+2x=0\dfrac{d^2x}{dt^2}+2x=0

Auxiliary equation


r2+2=0r^2+2=0

r=±2ir=\pm\sqrt{2}i

The general solution of the homogeneous differential equation is


xh=c1cos(2t)+c2sin(2t)x_h=c_1\cos(\sqrt{2}t)+c_2\sin(\sqrt{2}t)

Find the partial solution of the nonhomogeneous differential equation


x~=Atet+Bet\tilde{x}=Ate^t+Be^t

x~=Atet+Aet+Bet\tilde{x}'=Ate^t+Ae^t+Be^t

x~=Atet+2Aet+Bet\tilde{x}''=Ate^t+2Ae^t+Be^t

Substitute


Atet+2Aet+Bet+2Atet+2BetAte^t+2Ae^t+Be^t+2Ate^t+2Be^t

=tet+2et=te^t+2e^t

A=13,B=4a9A=\dfrac{1}{3}, B=\dfrac{4a}{9}

The general solution of the nonhomogeneous differential equation is


x(t)=c1cos(2t)+c2sin(2t)+13tet+49etx(t)=c_1\cos(\sqrt{2}t)+c_2\sin(\sqrt{2}t)+\dfrac{1}{3}te^t +\dfrac{4}{9}e^tdxdt=c12sin(2t)+c22cos(2t)\dfrac{dx}{dt}=-c_1\sqrt{2}\sin(\sqrt{2}t)+c_2\sqrt{2}\cos(\sqrt{2}t)+13tet+13et+49et+\dfrac{1}{3}te^t +\dfrac{1}{3}e^t +\dfrac{4}{9}e^t

y=dxdt+xtety= \dfrac{dx}{dt}+x-te^t

y=c12sin(2t)+c22cos(2t)y=-c_1\sqrt{2}\sin(\sqrt{2}t)+c_2\sqrt{2}\cos(\sqrt{2}t)

+13tet+79et+c1cos(2t)+c2sin(2t)+\dfrac{1}{3}te^t +\dfrac{7}{9}e^t+c_1\cos(\sqrt{2}t)+c_2\sin(\sqrt{2}t)

+13tet+49ettet+\dfrac{1}{3}te^t +\dfrac{4}{9}e^t-te^t


x(t)=c1cos(2t)+c2sin(2t)+13tet+49etx(t)=c_1\cos(\sqrt{2}t)+c_2\sin(\sqrt{2}t)+\dfrac{1}{3}te^t +\dfrac{4}{9}e^t

y(t)=(c1+c22)cos(2t)+(c12+c2)sin(2t)y(t)=(c_1+c_2\sqrt{2})\cos(\sqrt{2}t)+(-c_1\sqrt{2}+c_2)\sin(\sqrt{2}t)

13tet+119et-\dfrac{1}{3}te^t +\dfrac{11}{9}e^t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS