a) Differential equation of a LR circuit
L d I d t + R I = E L\dfrac{dI}{dt}+RI=E L d t d I + R I = E d I d t + R L I = E L \dfrac{dI}{dt}+\dfrac{R}{L}I=\dfrac{E}{L} d t d I + L R I = L E
Integrating factor
μ ( t ) = e ∫ ( R / L ) d t = e ( R / L ) t \mu(t)=e^{\int(R/L)dt}=e^{(R/L)t} μ ( t ) = e ∫ ( R / L ) d t = e ( R / L ) t
e ( R / L ) t ( d I d t + R L I ) = e ( R / L ) t E L e^{(R/L)t}(\dfrac{dI}{dt}+\dfrac{R}{L}I)=e^{(R/L)t}\dfrac{E}{L} e ( R / L ) t ( d t d I + L R I ) = e ( R / L ) t L E
d ( e ( R / L ) t I ) = e ( R / L ) t E L d t d(e^{(R/L)t}I)=e^{(R/L)t}\dfrac{E}{L}dt d ( e ( R / L ) t I ) = e ( R / L ) t L E d t Integrate
∫ d ( e ( R / L ) t I ) = ∫ e ( R / L ) t E L d t \int d(e^{(R/L)t}I) =\int e^{(R/L)t}\dfrac{E}{L}dt ∫ d ( e ( R / L ) t I ) = ∫ e ( R / L ) t L E d t
e ( R / L ) t I = E R e ( R / L ) t + C e^{(R/L)t}I=\dfrac{E}{R}e^{(R/L)t}+C e ( R / L ) t I = R E e ( R / L ) t + C
I ( t ) = E R + C e − ( R / L ) t I(t)=\dfrac{E}{R}+Ce^{-(R/L)t} I ( t ) = R E + C e − ( R / L ) t I ( 0 ) = 0 I(0)=0 I ( 0 ) = 0
0 = E R + C 0=\dfrac{E}{R}+C 0 = R E + C
C = − E R C=-\dfrac{E}{R} C = − R E
I ( t ) = E R ( 1 − e − ( R / L ) t ) I(t)=\dfrac{E}{R}(1-e^{-(R/L)t}) I ( t ) = R E ( 1 − e − ( R / L ) t )
Given E = 500 V , R = 250 O h m , L = 640 H E=500V, R=250\ Ohm, L=640\ H E = 500 V , R = 250 O hm , L = 640 H
Substitute
I ( t ) = 500 250 ( 1 − e − ( 250 / 640 ) t ) I(t)=\dfrac{500}{250}(1-e^{-(250/640)t}) I ( t ) = 250 500 ( 1 − e − ( 250/640 ) t )
I ( t ) = 2 ( 1 − e − ( 25 / 64 ) t ) I(t)=2(1-e^{-(25/64)t}) I ( t ) = 2 ( 1 − e − ( 25/64 ) t ) Find the time 𝑡 that elapses, before the current I I I reaches 90% of its maximum value
I ( t 1 ) = 2 ( 1 − e − ( 25 / 64 ) t 1 ) = 2 ( 0.9 ) I(t_{1})=2(1-e^{-(25/64)t_1})=2(0.9) I ( t 1 ) = 2 ( 1 − e − ( 25/64 ) t 1 ) = 2 ( 0.9 )
e − ( 25 / 64 ) t 1 = 0.1 e^{-(25/64)t_1}=0.1 e − ( 25/64 ) t 1 = 0.1
25 64 t 1 = ln ( 10 ) \dfrac{25}{64}t_1=\ln (10) 64 25 t 1 = ln ( 10 )
t 1 = 2.56 ln ( 10 ) s t_1=2.56\ln(10) \ s t 1 = 2.56 ln ( 10 ) s
t 1 ≈ 5.8946 s t_1\approx5.8946\ s t 1 ≈ 5.8946 s
b)
d x d t + x − y = t e t \dfrac{dx}{dt}+x-y=te^t d t d x + x − y = t e t
2 x − d x d t + d y d t = e t 2x-\dfrac{dx}{dt}+\dfrac{dy}{dt}=e^t 2 x − d t d x + d t d y = e t Differentiate the first equation with respect to t t t
d 2 x d t 2 + d x d t − d y d t = t e t + e t \dfrac{d^2x}{dt^2}+\dfrac{dx}{dt}-\dfrac{dy}{dt}=te^t+e^t d t 2 d 2 x + d t d x − d t d y = t e t + e t Substitute
d y d t = d x d t − 2 x + e t \dfrac{dy}{dt}=\dfrac{dx}{dt}-2x+e^t d t d y = d t d x − 2 x + e t
d 2 x d t 2 + d x d t − d x d t + 2 x − e t = t e t + e t \dfrac{d^2x}{dt^2}+\dfrac{dx}{dt}-\dfrac{dx}{dt}+2x-e^t=te^t+e^t d t 2 d 2 x + d t d x − d t d x + 2 x − e t = t e t + e t
d 2 x d t 2 + 2 x = t e t + 2 e t \dfrac{d^2x}{dt^2}+2x=te^t+2e^t d t 2 d 2 x + 2 x = t e t + 2 e t Corresponding homogeneous differential equation
d 2 x d t 2 + 2 x = 0 \dfrac{d^2x}{dt^2}+2x=0 d t 2 d 2 x + 2 x = 0 Auxiliary equation
r 2 + 2 = 0 r^2+2=0 r 2 + 2 = 0
r = ± 2 i r=\pm\sqrt{2}i r = ± 2 i The general solution of the homogeneous differential equation is
x h = c 1 cos ( 2 t ) + c 2 sin ( 2 t ) x_h=c_1\cos(\sqrt{2}t)+c_2\sin(\sqrt{2}t) x h = c 1 cos ( 2 t ) + c 2 sin ( 2 t ) Find the partial solution of the nonhomogeneous differential equation
x ~ = A t e t + B e t \tilde{x}=Ate^t+Be^t x ~ = A t e t + B e t
x ~ ′ = A t e t + A e t + B e t \tilde{x}'=Ate^t+Ae^t+Be^t x ~ ′ = A t e t + A e t + B e t
x ~ ′ ′ = A t e t + 2 A e t + B e t \tilde{x}''=Ate^t+2Ae^t+Be^t x ~ ′′ = A t e t + 2 A e t + B e t Substitute
A t e t + 2 A e t + B e t + 2 A t e t + 2 B e t Ate^t+2Ae^t+Be^t+2Ate^t+2Be^t A t e t + 2 A e t + B e t + 2 A t e t + 2 B e t
= t e t + 2 e t =te^t+2e^t = t e t + 2 e t
A = 1 3 , B = 4 a 9 A=\dfrac{1}{3}, B=\dfrac{4a}{9} A = 3 1 , B = 9 4 a The general solution of the nonhomogeneous differential equation is
x ( t ) = c 1 cos ( 2 t ) + c 2 sin ( 2 t ) + 1 3 t e t + 4 9 e t x(t)=c_1\cos(\sqrt{2}t)+c_2\sin(\sqrt{2}t)+\dfrac{1}{3}te^t +\dfrac{4}{9}e^t x ( t ) = c 1 cos ( 2 t ) + c 2 sin ( 2 t ) + 3 1 t e t + 9 4 e t d x d t = − c 1 2 sin ( 2 t ) + c 2 2 cos ( 2 t ) \dfrac{dx}{dt}=-c_1\sqrt{2}\sin(\sqrt{2}t)+c_2\sqrt{2}\cos(\sqrt{2}t) d t d x = − c 1 2 sin ( 2 t ) + c 2 2 cos ( 2 t ) + 1 3 t e t + 1 3 e t + 4 9 e t +\dfrac{1}{3}te^t +\dfrac{1}{3}e^t +\dfrac{4}{9}e^t + 3 1 t e t + 3 1 e t + 9 4 e t
y = d x d t + x − t e t y= \dfrac{dx}{dt}+x-te^t y = d t d x + x − t e t
y = − c 1 2 sin ( 2 t ) + c 2 2 cos ( 2 t ) y=-c_1\sqrt{2}\sin(\sqrt{2}t)+c_2\sqrt{2}\cos(\sqrt{2}t) y = − c 1 2 sin ( 2 t ) + c 2 2 cos ( 2 t )
+ 1 3 t e t + 7 9 e t + c 1 cos ( 2 t ) + c 2 sin ( 2 t ) +\dfrac{1}{3}te^t +\dfrac{7}{9}e^t+c_1\cos(\sqrt{2}t)+c_2\sin(\sqrt{2}t) + 3 1 t e t + 9 7 e t + c 1 cos ( 2 t ) + c 2 sin ( 2 t )
+ 1 3 t e t + 4 9 e t − t e t +\dfrac{1}{3}te^t +\dfrac{4}{9}e^t-te^t + 3 1 t e t + 9 4 e t − t e t
x ( t ) = c 1 cos ( 2 t ) + c 2 sin ( 2 t ) + 1 3 t e t + 4 9 e t x(t)=c_1\cos(\sqrt{2}t)+c_2\sin(\sqrt{2}t)+\dfrac{1}{3}te^t +\dfrac{4}{9}e^t x ( t ) = c 1 cos ( 2 t ) + c 2 sin ( 2 t ) + 3 1 t e t + 9 4 e t
y ( t ) = ( c 1 + c 2 2 ) cos ( 2 t ) + ( − c 1 2 + c 2 ) sin ( 2 t ) y(t)=(c_1+c_2\sqrt{2})\cos(\sqrt{2}t)+(-c_1\sqrt{2}+c_2)\sin(\sqrt{2}t) y ( t ) = ( c 1 + c 2 2 ) cos ( 2 t ) + ( − c 1 2 + c 2 ) sin ( 2 t )
− 1 3 t e t + 11 9 e t -\dfrac{1}{3}te^t +\dfrac{11}{9}e^t − 3 1 t e t + 9 11 e t
Comments