a) In a circuit containing inductance πΏ, resistance π and voltage πΈ, the current πΌ is
given by πΈ = π πΌ + πΏ
ππΌ
ππ‘
. Given πΏ = 640 β , π = 250 πΊ and πΈ =
500 π£πππ‘ . πΌ being 0 when π‘ = 0. Find the time π‘ that elapses, before the current
πΌ reaches 90% of its maximum value.
[5]
b) Solve the system:
ππ₯
ππ‘
+ π₯ β π¦ = π‘π
π‘
, 2π¦ β
ππ₯
ππ‘
+
ππ¦
ππ‘
= π
a) Differential equation of a LR circuitΒ
Integrating factor
"e^{(R\/L)t}(\\dfrac{dI}{dt}+\\dfrac{R}{L}I)=e^{(R\/L)t}\\dfrac{E}{L}"
"d(e^{(R\/L)t}I)=e^{(R\/L)t}\\dfrac{E}{L}dt"
Integrate
"e^{(R\/L)t}I=\\dfrac{E}{R}e^{(R\/L)t}+C"
"I(t)=\\dfrac{E}{R}+Ce^{-(R\/L)t}"
"I(0)=0"
"0=\\dfrac{E}{R}+C""C=-\\dfrac{E}{R}"
"I(t)=\\dfrac{E}{R}(1-e^{-(R\/L)t})"
Given "E=500V, R=250\\ Ohm, L=640\\ H"
Substitute
Find the time π‘ that elapses, before the current "I" reaches 90% of its maximum value
"e^{-(25\/64)t_1}=0.1"
"\\dfrac{25}{64}t_1=\\ln (10)"
"t_1=2.56\\ln(10) \\ s"
"t_1\\approx5.8946\\ s"
b)
"2x-\\dfrac{dx}{dt}+\\dfrac{dy}{dt}=e^t"
Differentiate the first equation with respect to "t"
Substitute
"\\dfrac{d^2x}{dt^2}+\\dfrac{dx}{dt}-\\dfrac{dx}{dt}+2x-e^t=te^t+e^t"
"\\dfrac{d^2x}{dt^2}+2x=te^t+2e^t"
Corresponding homogeneous differential equation
Auxiliary equation
"r=\\pm\\sqrt{2}i"
The general solution of the homogeneous differential equation is
Find the partial solution of the nonhomogeneous differential equation
"\\tilde{x}'=Ate^t+Ae^t+Be^t"
"\\tilde{x}''=Ate^t+2Ae^t+Be^t"
Substitute
"=te^t+2e^t"
"A=\\dfrac{1}{3}, B=\\dfrac{4a}{9}"
The general solution of the nonhomogeneous differential equation is
"y= \\dfrac{dx}{dt}+x-te^t"
"y=-c_1\\sqrt{2}\\sin(\\sqrt{2}t)+c_2\\sqrt{2}\\cos(\\sqrt{2}t)"
"+\\dfrac{1}{3}te^t +\\dfrac{7}{9}e^t+c_1\\cos(\\sqrt{2}t)+c_2\\sin(\\sqrt{2}t)"
"+\\dfrac{1}{3}te^t +\\dfrac{4}{9}e^t-te^t"
"y(t)=(c_1+c_2\\sqrt{2})\\cos(\\sqrt{2}t)+(-c_1\\sqrt{2}+c_2)\\sin(\\sqrt{2}t)"
"-\\dfrac{1}{3}te^t +\\dfrac{11}{9}e^t"
Comments
Leave a comment