Corresponding homogeneous equation
(D2−3D+2)y=0Characteristic (auxiliary) equation
r2−3r+2=0(r−1)(r−2)=0r1=1,r2=2The general solution of the homogeneous differential equation
yh=c1ex+c2e2xFind the partial solution of the nonhomogeneous differential equation in the form
y1(x)=Ax2+Bx+C+Dcosx+Esinxy1′=2Ax+B−Dsinx+Ecosxy1′′=2A−Dcosx−EsinxSubstitute
2A−Dcosx−Esinx−6Ax−3B+3Dsinx−3Ecosx+2Ax2+2Bx+2C+2Dcosx+2Esinx=x2+sinxx2:2A=1x1:−6A+2B=0x0:2A−3B+2C=0cosx:D−3E=0sinx:E+3D=1A=21,B=23,C=47D=103,E=101The partial solution of the nonhomogeneous differential equation is
y1(x)=21x2+23x+47+103cosx+101sinxThe general solution of the nonhomogeneous differential equation is
y(x)=c1ex+c2e2x+21x2+23x+47+103cosx+101sinx
Comments