a.
y ′ y 2 + 1 3 y = e x \frac{y'}{y^2}+\frac{1}{3y}=e^x y 2 y ′ + 3 y 1 = e x
z = 1 / y , z ′ = − y ′ / y 2 z=1/y,z'=-y'/y^2 z = 1/ y , z ′ = − y ′ / y 2
− z ′ + z / 3 = e x -z'+z/3=e^x − z ′ + z /3 = e x
z = u v , z ′ = u ′ v + u v ′ z=uv,z'=u'v+uv' z = uv , z ′ = u ′ v + u v ′
− ( u ′ v + u v ′ ) + u v / 3 = e x -(u'v+uv')+uv/3=e^x − ( u ′ v + u v ′ ) + uv /3 = e x
− u ′ v + u ( v / 3 − v ′ ) = e x -u'v+u(v/3-v')=e^x − u ′ v + u ( v /3 − v ′ ) = e x
v / 3 − v ′ = 0 v/3-v'=0 v /3 − v ′ = 0
− u ′ v = e x -u'v=e^x − u ′ v = e x
d v / v = d x / 3 dv/v=dx/3 d v / v = d x /3
l n v = x / 3 lnv=x/3 l n v = x /3
v = e x / 3 v=e^{x/3} v = e x /3
− u ′ e x / 3 = e x -u'e^{x/3}=e^x − u ′ e x /3 = e x
u ′ = − e 2 x / 3 u'=-e^{2x/3} u ′ = − e 2 x /3
u = − 3 e 2 x / 3 / 2 + c u=-3e^{2x/3}/2+c u = − 3 e 2 x /3 /2 + c
z = e x / 3 ( − 3 e 2 x / 3 / 2 + c ) z=e^{x/3}(-3e^{2x/3}/2+c) z = e x /3 ( − 3 e 2 x /3 /2 + c )
y = 1 e x / 3 ( − 3 e 2 x / 3 / 2 + c ) y=\frac{1}{e^{x/3}(-3e^{2x/3}/2+c)} y = e x /3 ( − 3 e 2 x /3 /2 + c ) 1
b.
x y ′ y 3 + 1 y 2 = x \frac{xy'}{y^3}+\frac{1}{y^2}=x y 3 x y ′ + y 2 1 = x
z = 1 / y 2 , z ′ = − 2 y ′ / y 3 z=1/y^2,z'=-2y'/y^3 z = 1/ y 2 , z ′ = − 2 y ′ / y 3
− x z ′ / 2 + z = x -xz'/2+z=x − x z ′ /2 + z = x
z = u v , z ′ = u ′ v + u v ′ z=uv,z'=u'v+uv' z = uv , z ′ = u ′ v + u v ′
− x ( u ′ v + u v ′ ) + 2 u v = 2 x -x(u'v+uv')+2uv=2x − x ( u ′ v + u v ′ ) + 2 uv = 2 x
− x v u ′ + u ( 2 v − x v ′ ) = 2 x -xvu'+u(2v-xv')=2x − xv u ′ + u ( 2 v − x v ′ ) = 2 x
− v u ′ = 2 -vu'=2 − v u ′ = 2
2 v − x v ′ = 0 2v-xv'=0 2 v − x v ′ = 0
d v / v = 2 d x / x dv/v=2dx/x d v / v = 2 d x / x
l n v = 2 l n x lnv=2lnx l n v = 2 l n x
v = x 2 v=x^2 v = x 2
− x 2 u ′ = 2 -x^2u'=2 − x 2 u ′ = 2
d u = − 2 d x / x 2 du=-2dx/x^2 d u = − 2 d x / x 2
u = 2 / x + c u=2/x+c u = 2/ x + c
z = x 2 ( 2 / x + c ) z=x^2(2/x+c) z = x 2 ( 2/ x + c )
y = 1 x 2 / x + c y=\frac{1}{x\sqrt{2/x+c}} y = x 2/ x + c 1
c.
y ′ / y 2 + 2 / ( x y ) = − x 2 c o s x y'/y^2+2/(xy)=-x^2cosx y ′ / y 2 + 2/ ( x y ) = − x 2 cos x
z = 1 / y , z ′ = − y ′ / y 2 z=1/y,z'=-y'/y^2 z = 1/ y , z ′ = − y ′ / y 2
− z ′ + 2 z / x = − x 2 c o s x -z'+2z/x=-x^2cosx − z ′ + 2 z / x = − x 2 cos x
z = u v , z ′ = u ′ v + u v ′ z=uv,z'=u'v+uv' z = uv , z ′ = u ′ v + u v ′
− ( u ′ v + u v ′ ) + 2 u v / x = − x 2 c o s x -(u'v+uv')+2uv/x=-x^2cosx − ( u ′ v + u v ′ ) + 2 uv / x = − x 2 cos x
− u ′ v = − x 2 c o s x -u'v=-x^2cosx − u ′ v = − x 2 cos x
2 v / x − v ′ = 0 2v/x-v'=0 2 v / x − v ′ = 0
d v / v = 2 d x / x dv/v=2dx/x d v / v = 2 d x / x
v = x 2 v=x^2 v = x 2
u ′ = c o s x u'=cosx u ′ = cos x
u = s i n x + c u=sinx+c u = s in x + c
z = x 2 ( s i n x + c ) z=x^2(sinx+c) z = x 2 ( s in x + c )
y = 1 x 2 ( s i n x + c ) y=\frac{1}{x^2(sinx+c)} y = x 2 ( s in x + c ) 1
d.
x 2 / y − x 3 y ′ / y 2 = c o s x x^2/y-x^3y'/y^2=cosx x 2 / y − x 3 y ′ / y 2 = cos x
z = 1 / y , z ′ = − y ′ / y 2 z=1/y,z'=-y'/y^2 z = 1/ y , z ′ = − y ′ / y 2
z x 2 + x 3 z ′ = c o s x zx^2+x^3z'=cosx z x 2 + x 3 z ′ = cos x
z = u v , z ′ = u ′ v + u v ′ z=uv,z'=u'v+uv' z = uv , z ′ = u ′ v + u v ′
u v x 2 + x 3 ( u ′ v + u v ′ ) = c o s x uvx^2+x^3(u'v+uv')=cosx uv x 2 + x 3 ( u ′ v + u v ′ ) = cos x
x 3 u ′ v = c o s x x^3u'v=cosx x 3 u ′ v = cos x
v x 2 + x 3 v ′ = 0 vx^2+x^3v'=0 v x 2 + x 3 v ′ = 0
d v / v = − d x / x dv/v=-dx/x d v / v = − d x / x
l n v = − l n x lnv=-lnx l n v = − l n x
v = 1 / x v=1/x v = 1/ x
x 2 u ′ = c o s x x^2u'=cosx x 2 u ′ = cos x
u = ∫ c o s x d x / x 2 = − i ( Γ ( − 1 , i x ) ) − Γ ( − 1 , − i x ) 2 + c u=\int cosxdx/x^2=-\frac{i(\Gamma(-1,ix))-\Gamma(-1,-ix)}{2}+c u = ∫ cos x d x / x 2 = − 2 i ( Γ ( − 1 , i x )) − Γ ( − 1 , − i x ) + c
z = 1 x ( − i ( Γ ( − 1 , i x ) ) − Γ ( − 1 , − i x ) 2 + c ) z=\frac{1}{x}(-\frac{i(\Gamma(-1,ix))-\Gamma(-1,-ix)}{2}+c) z = x 1 ( − 2 i ( Γ ( − 1 , i x )) − Γ ( − 1 , − i x ) + c )
y = x − i ( Γ ( − 1 , i x ) ) − Γ ( − 1 , − i x ) 2 + c y=\frac{x}{-\frac{i(\Gamma(-1,ix))-\Gamma(-1,-ix)}{2}+c} y = − 2 i ( Γ ( − 1 , i x )) − Γ ( − 1 , − i x ) + c x
where Γ ( z ) \Gamma(z) Γ ( z ) is gamma function:
Γ ( z ) = ∫ 0 ∞ x z − 1 e − x d x \Gamma(z)=\int^{\infin}_0 x^{z-1}e^{-x}dx Γ ( z ) = ∫ 0 ∞ x z − 1 e − x d x
Comments